DOI QR코드

DOI QR Code

Enhanced Photo Current in n-ZnO/p-Si Diode Via Embedded Ag Nanoparticles for the Solar Cell Application

  • Received : 2014.08.25
  • Accepted : 2014.12.22
  • Published : 2015.02.28

Abstract

In this study, an n-ZnO/p-Si heterojunction diode with embedded Ag nanoparticles was fabricated to investigate the possible improvement of light trapping via the surface plasmon resonance effect for solar cell applications. The Ag nanoparticles were fabricated by the physical sputtering method. The acquired current-voltage curves and optical absorption spectra demonstrated that the application of Ag nanoparticles in the n-ZnO/p-Si interface increased the photo current, particularly in specific wavelength regions. The results indicate that the enhancement of the photo current was caused by the surface plasmon resonance effect generated by the Ag nanoparticles. In addition, minority carrier lifetime measurements showed that the recombination losses caused by the Ag nanoparticles were negligible. These results suggest that the embedding of Ag nanoparticles is a powerful method to improve the performance of n-ZnO/p-Si heterojunction solar cells.

Acknowledgement

Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP), National Research Foundation of Korea (NRF)

References

  1. F. Mafune, et al., "Formation and size control of silver nanoparticles by laser ablation in aqueous solution." J. Phys. Chem. B, Vol.104, No.39, pp. 9111-9117, 2000. https://doi.org/10.1021/jp001336y
  2. P. Schilinsky, et al., "Performance analysis of printed bulk heterojunction solar cells." Adv. Funct. Mater., Vol. 16. No. 13, pp. 1669-1672, Sep., 2006. https://doi.org/10.1002/adfm.200500581
  3. Y. S. Kim, et al., "The effect of Al-Ta2O5 topographic interface roughness on the leakage current of Ta2O5 thin films." Appl. Phys. Lett., Vol.74, No.19, pp.2800-2802, May., 1999. https://doi.org/10.1063/1.124018
  4. M. Taguchi, et al., "HIT cells-high-efficiency crystalline Si cells with novel structure." Prog. Photovolt: Res. Appl, Vol.8, No.5, pp.503-514, Jun., 2000. https://doi.org/10.1002/1099-159X(200009/10)8:5<503::AID-PIP347>3.0.CO;2-G
  5. A. A. Ibrahim and A. Ashour, "ZnO/Si solar cell fabricated by spray pyrolysis technique.", J. Mater. Sci: Mater. Electron, Vol.17, No.10, pp. 835-839, May, 2006. https://doi.org/10.1007/s10854-006-0031-2
  6. D. C. Look, et al., "Evidence for native-defect donors in n-type ZnO." Phys. Rev. Lett., Vol.95, No.22, pp. 225502-1-225502-4, Nov., 2005. https://doi.org/10.1103/PhysRevLett.95.225502
  7. I. S. Jeong, et al., "Ultraviolet-enhanced photodiode employing n-ZnO/p-Si structure.", Appl. Phys. Lett., Vol.83, No.14, pp. 2946-2948,Oct., 2003. https://doi.org/10.1063/1.1616663
  8. Z. Wei-Ying, et al., "Dependence of photovoltaicproperty of ZnO/Si heterojunction solar cell onthickness of ZnO films." Chin. Phys. Lett., Vol.25, No.5, pp.1829-1831, May, 2007. https://doi.org/10.1088/0256-307X/25/5/083
  9. J. L. Wu, et al., "Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells.", Acs Nano, Vol.5, No.2, pp.959-967, Jan., 2011. https://doi.org/10.1021/nn102295p
  10. Y. A. Akimov, et al., "Surface plasmon enhancement of optical absorption in thin-film silicon solar cells.", Plasmonics, Vol.4, No.2, pp.107-113, Jun., 2009. https://doi.org/10.1007/s11468-009-9080-8
  11. K. C. Lee, et al., "Size effect of Ag nanoparticles on surface plasmon resonance.", Surf. Coating Tech., Vol.202, No.22, pp.5339-5342, Aug., 2008. https://doi.org/10.1016/j.surfcoat.2008.06.080
  12. S. Terauchi, et al., "Fabrication of Au nanoparticles by radio-frequency magnetron sputtering.", Nanostruct. Mater., Vol.5, No.1, pp.71-78, Jan., 1995. https://doi.org/10.1016/0965-9773(95)00011-3
  13. S. Pillai, et al., "Enhanced emission from Si-based light emitting diode using surface plasmon." Appl. Phys. Lett., Vol.88, No.16, 161102-1-161102-3, 2006. https://doi.org/10.1063/1.2195695