RESEARCH ARTICLE

Epidemiological Trends of Histopathologically WHO Classified CNS Tumors in Developing Countries: Systematic Review

Ishaq Khan¹, Mohammed Bangash², Saleh Baeesa², Awatif Jamal³, Angel Carracedo⁴, Fahad Alghamdi⁵, Hanadi Qashqari⁵, Adel Abuzenadah⁶, Mohammed AlQahtani¹, Ghazi Damanhourί⁵, Adeel Chaudhary¹, Deema Hussein⁵*¹

Abstract

Background: Many developing countries are lagging behind in reporting epidemiological data for individual central nervous system (CNS) tumors. This paper aimed to elicit patterns for the epidemiology of individual World Health Organization (WHO) classified CNS tumors in countries registered by WHO as “developing”.

Materials and Methods: Cyber search was carried out through 66 cancer networks/registries and 181 PubMed published papers that reported counts of CNS tumors for the period of 2009-2012. The relationship between the natural log of incidence Age Standardized Rate (ASR) reported by Globocan and Latitude/Longitude was investigated.

Results: Registries for 21 countries displayed information related to CNS tumors. In contrast trends for classified CNS tumor cases were identified for 38 countries via 181 PubMed publications. Extracted data showed a majority of unclassified reported cases [PubMed (38 countries, 45.7%), registries (21 countries, 96.1%)]. For classified tumors, astrocytic tumors were the most frequently reported type [PubMed (38 countries, 1,245 cases, 15.7%), registries (21 countries, 627 cases, 1.99%)]. A significant linear regression relationship emerged between latitudes and reported cases of CNS tumors.

Conclusions: Previously unreported trends of frequencies for individually classified CNS tumors were elucidated and a possible link of CNS tumors occurrence with geographical location emerged.

Keywords: CNS tumors - epidemiology - developing countries - cancer registries - latitude - risk factors

Asian Pac J Cancer Prev, 16 (1), 205-216

Introduction

Eliciting patterns for the distribution of disease between different populations over time is important for the development and the realization of health policies (Chauvin et al., 2012). For tumors originating in the Central Nervous System (CNS), there is a collection of a large spectrum of neoplasms classified by World Health Organization (WHO), with each tumor having its own features, location, morphology, prognosis and treatment (DeAngelis, 2001; Louis et al., 2007; Katchy et al., 2011).

The latest Globocan report for 2012 estimated a total incidence ASR of 3.4 per 100,000 and a mortality ASR of 2.5 per 100,000 worldwide (Parkin et al., 2001; GLOBOCAN, 2014). Incidence ASR of CNS tumors in the developing region was estimated to be 3.0 per 100,000, and for mortality ASR the estimation was 2.2 per 100,000. In addition, Globocan described gender-related data and showed that men have a higher CNS tumors incidence ASR 3.9 compared with women 3.0 worldwide. Unfortunately, however, trends for individually classified types of CNS tumors are not available from this database.

Many developed countries across the globe have developed cancer registries, which record and provide data of CNS tumors’ specific incidences and mortalities (Surawicz et al., 1999; CancerResearchUK, 2013a; Villano et al., 2013; Woehrer, 2013). Recent reports show that Astrocytomas were the most common in the UK (CancerResearchUK, 2013b), Meningiomas were most reported in the USA (Dolecek et al., 2012) and glioblastoma multiform (GBM) tumors had the highest frequencies in Canada (BrainTumourFoundation, 2013).

Developing countries are lagging behind in reporting epidemiological data for cancer (Ferlay et al., 2010; Qaddoumi et al., 2011). In addition, although there are cancer registries for some developing countries, they inadequately report data for different types of CNS tumors (AFCRN, 2013). To obtain an estimated perspective of the current status of CNS tumors in developing countries, detailed and global epidemiological studies are required (Katchy et al., 2011). This work aimed to elicit patterns for the epidemiology of individually reported CNS tumors subtypes in countries registered by the WHO as “developing”.

¹Center of Excellence in Genomic Medicine, ²Division of Neurosurgery, ³King Fahd Medical Research Center, ⁴Centre of Innovation for Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia, ⁵Fundacion Galega de Medicina Xenomica (SERGAS), CIBERER-Universidade de Santiago de Compostela, Santiago de Compostela, Spain ⁶For correspondence: deemaah@hotmail.com
Materials and Methods

Search Strategy and Data Extraction

Cyber methods of search strategies were implemented to retrieve data for the incidence of CNS tumors between the years 2009-2012 in 149 countries registered by WHO as “developing” (Figure 1). Briefly, for cancer registries/networks search, Google website was searched to find

<table>
<thead>
<tr>
<th>Table 1. A list of Countries who Reported CNS Tumor Cases Via Cancer Registries or PubMed and the Predominant Tumor Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region Country</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>EAP</td>
</tr>
<tr>
<td>China</td>
</tr>
<tr>
<td>Malaysia</td>
</tr>
<tr>
<td>Nepal</td>
</tr>
<tr>
<td>Thailand</td>
</tr>
<tr>
<td>ECA</td>
</tr>
<tr>
<td>Albania</td>
</tr>
<tr>
<td>Belarus</td>
</tr>
<tr>
<td>Bosnia & Herzegovina</td>
</tr>
<tr>
<td>Bulgaria</td>
</tr>
<tr>
<td>Croatia</td>
</tr>
<tr>
<td>Georgia</td>
</tr>
<tr>
<td>Hungary</td>
</tr>
<tr>
<td>Latvia</td>
</tr>
<tr>
<td>Lithuania</td>
</tr>
<tr>
<td>Moldova</td>
</tr>
<tr>
<td>Montenegro</td>
</tr>
<tr>
<td>Poland</td>
</tr>
<tr>
<td>Romania</td>
</tr>
<tr>
<td>Russian Federation</td>
</tr>
<tr>
<td>Serbia</td>
</tr>
<tr>
<td>Turkey</td>
</tr>
<tr>
<td>Ukraine</td>
</tr>
<tr>
<td>LAC</td>
</tr>
<tr>
<td>Argentina</td>
</tr>
<tr>
<td>Brazil</td>
</tr>
<tr>
<td>Chile</td>
</tr>
<tr>
<td>Colombia</td>
</tr>
<tr>
<td>Mexico</td>
</tr>
<tr>
<td>MENA</td>
</tr>
<tr>
<td>Algeria</td>
</tr>
<tr>
<td>Egypt</td>
</tr>
<tr>
<td>Iran</td>
</tr>
<tr>
<td>Jordan</td>
</tr>
<tr>
<td>Lebanon</td>
</tr>
<tr>
<td>Libya</td>
</tr>
<tr>
<td>Morocco</td>
</tr>
<tr>
<td>Oman</td>
</tr>
<tr>
<td>Qatar</td>
</tr>
<tr>
<td>Saudi Arabia</td>
</tr>
<tr>
<td>Tunisia</td>
</tr>
<tr>
<td>UAE</td>
</tr>
<tr>
<td>SA</td>
</tr>
<tr>
<td>Bangladesh</td>
</tr>
<tr>
<td>India</td>
</tr>
<tr>
<td>Pakistan</td>
</tr>
<tr>
<td>SSA</td>
</tr>
<tr>
<td>Kenya</td>
</tr>
<tr>
<td>Nigeria</td>
</tr>
<tr>
<td>South Africa</td>
</tr>
<tr>
<td>Total Reported Cases</td>
</tr>
<tr>
<td>Total Reporting Countries</td>
</tr>
</tbody>
</table>

official websites of cancer registries networks, such as Globocan, AFRCN (African Cancer-Registry Network) and EUCAN, or cancer registries for 149 individual countries. For PubMed search, four main limitation steps were included: year, tumor, incidence and country name, the second involved scanning retrieved abstracts for a list of key words, the third involved checking for authenticity of names (sometimes a name of country overlapped with other elements for example the name Georgia stands for a European developing country and an American state) and finally a check on the date of the reported cases was applied (some papers were published in 2010 but were reporting cases prior to 2009).

Data analysis

Identified reported cases were fitted within 17 WHO classified groups (Louis et al., 2007) based on descriptive names by source. Grouped tumors for reported names included: astrocytic tumors [reported names were pilocytic astrocytoma, pilomyxoid astrocytoma, diffuse astrocytoma, fibrillary astrocytoma, anaplastic astrocytoma, gbm, gliosarcoma, and sega], meningecal tumors [reported names were meningioma, atypical meningioma, haemangiopericytoma and haemangioblastoma], oligodendrogial tumors [reported names were oligodendroglioma and anaplastic oligodendroglioma], embryonal tumors [reported names were embryonal, medulloblastoma, melanotic neuroectodermal tumour of infancy, and atypical teratoid/rhabdoid tumor], oligoastrocytic tumors [reported names were oligoastrocytoma and anaplastic oligoastrocytoma], ependymal tumors [reported names were ependymoma and myxopapillary ependymoma], tumors of cranial and paraspinal nerves [reported names were schwannoma, neurinoma, acoustic neuroma, nerve sheath tumors and spinal neurofibromatosis], other neuroepithelial tumors [reported names were astroblastoma and chordoid glioma], mesenchymal tumors [reported names were chordroma, lipoma, haemangioma, angiolipoma, rhabdomyosarcoma and ewing sarcoma – pnet], neuronal and mixed neuronal-glial tumors [reported names were gangliogioma, neurocytoma and papillary glioneuronal tumors], pineal tumors [reported names were pineoblastoma and other pineal tumors], germ cell tumors [reported names were germ cell, germinoma, yolk sac tumors and teratoma], and choroid plexus tumors [reported names were choroid plexus and choroid plexus papilloma], tumors reported as “low grade gliomas” or “high grade gliomas” were included as an independent “gliomas” group. Unclassified tumors were also considered as an independent group.

Identified countries were grouped within six regions: Europe and Central Asia (ECA), Latin America and the Caribbean (LAC), East Asia and Pacific (EAP), Middle East and North Africa (MENA), South Asia (SA), and Sub-Saharan Africa (SSA), as per WHO cataloging.

Linear regression analyses for the relationship of Globocan reported incidence ASR (Ln) for all CNS tumors reported from 169 WHO registered countries, or 126 developing countries, verses latitude or longitude were run using SPSS Graduate Pack 16.0. A similar process was applied to test the significance of the relationship between PubMed reported Astrocytic tumors counts (Ln) for 25 countries with latitude or longitude. Natural logs of CNS tumors counts were chosen since values for counts had skewed distributions. For each country, latitude/longitude coordinates were taken from Google Earth 6.0.2. (Google, 2014).

Results

Countries reporting CNS tumors

Out of 66 investigated registries, registries for 21 countries provided information related to CNS tumors (Table 1). Unfortunately, this number was even lower for those registries that provided detailed WHO classifications of CNS tumors (Thailand, Egypt, Jordan, Saudi Arabia, Pakistan, and Romania). The total reported cases identified in cancer registries for the years 2009-2012 was 31530, with Russian Federation (7377 cases, 23.4%), Ukraine (7361 cases, 23.3%) and Poland (4467 cases, 14.1%) being the top contributors (Batut, 2009 and 2010; Chiricuta, 2010; NCREgypt, 2010; WHO, 2010; KFSHRC, 2011; CroatianNCR, 2012; EUCAN, 2012; IARC, 2012; NCIThailand, 2012; Piya and Acharya, 2012; SHATOBalgaria, 2012; AFRCN, 2013; AMAAC, 2013; M0HJordan, 2013; NCIUkraine, 2013; ShaukatKhanum, 2013). In contrast, 38 countries have reported CNS tumor cases in 181 published papers (Ahmad et al., 2009; Akhaddar et al., 2009; Al-Dhahri et al., 2009; Al-Hussain and Dababo, 2009; Ali et al., 2009; Alimohamadi et al., 2009; Alpizar-Aguirre et al., 2009; Awad et al., 2009; Bien et al., 2009; Boongird et al., 2009; Bozic et al., 2009; Charfi et al., 2009; Ciobanu et al., 2009; Conca et al., 2009; Conen et al., 2009; Enchev et al., 2009; Gihtoiu et al., 2009; Gizem et al., 2009; Grahovac et al., 2009; Jamjoom et al., 2009; Joo et al., 2009; Komolafe et al., 2009; Limaia et al., 2009; Liu et al., 2009; Mallea-Gil et al., 2009; Marinovic et al., 2009; Mikati et al., 2009; Mosqueda-Taylor et al., 2009; Naydenov et al., 2009; Olufemi Adeleye and Balogun, 2009; Pronin et al., 2009;
Unclassified CNS Tumors & Reports in Cancer Registries & PubMed Publications

Table 2. Individually Classified CNS Tumor Cases Reported Via Cancer Registries and PubMed Publications

<table>
<thead>
<tr>
<th>Types of Reported CNS Tumors</th>
<th>Total Cases in Cancer Registries</th>
<th>Average Total (%)</th>
<th>Average (STD DEV (+/-))</th>
<th>Total Cases in PubMed</th>
<th>Average Total (%)</th>
<th>Average (STD DEV (+/-))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified CNS Tumors</td>
<td>30311 (96.1)</td>
<td>1443.3 (493.9)</td>
<td>3612 (45.6)</td>
<td>95.0 (67.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astrocytic Tumors</td>
<td>627 (1.99)</td>
<td>29.8 (14.4)</td>
<td>1245 (15.7)</td>
<td>32.7 (15.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pituitary Tumors NR</td>
<td></td>
<td></td>
<td>792 (10)</td>
<td>20.8 (9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meningeal Tumors NR</td>
<td>100 (0.32)</td>
<td>4.76 (2.51)</td>
<td>544 (6.88)</td>
<td>14.3 (6.88)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gliomas (Not WHO Classified)</td>
<td>154 (0.49)</td>
<td>7.33 (4.13)</td>
<td>420 (5.31)</td>
<td>11.0 (4.55)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligodendroglial Tumors</td>
<td>78 (0.25)</td>
<td>3.75 (1)</td>
<td>355 (4.49)</td>
<td>9.34 (5.74)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Embryonal Tumors</td>
<td>107 (0.34)</td>
<td>5.1 (2.64)</td>
<td>198 (2.5)</td>
<td>5.21 (2.51)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligoastrocytic Tumors</td>
<td>NR</td>
<td></td>
<td>191 (2.41)</td>
<td>5.03 (4.47)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ependymal Tumors NR</td>
<td>91 (0.29)</td>
<td>4.33 (2.18)</td>
<td>138 (1.74)</td>
<td>3.63 (2.26)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metastatic Tumors NR</td>
<td></td>
<td></td>
<td>117 (1.48)</td>
<td>3.08 (1.85)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumors of Cranial & Paraspinal Nerves</td>
<td>1 (0)</td>
<td>0.05 (0.05)</td>
<td>82 (1.04)</td>
<td>2.16 (1.19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumors of the Sellar Region NR</td>
<td></td>
<td></td>
<td>64 (0.81)</td>
<td>1.68 (0.86)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Neuroepithelial Tumors</td>
<td>36 (0.11)</td>
<td>1.71 (0.74)</td>
<td>43 (0.54)</td>
<td>1.13 (1.08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNS Lymphoma</td>
<td>14 (0.04)</td>
<td>0.67 (0.48)</td>
<td>41 (0.52)</td>
<td>1.08 (0.87)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesenchymal Tumors</td>
<td>5 (0.02)</td>
<td>0.24 (0.14)</td>
<td>25 (0.32)</td>
<td>0.66 (0.27)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neuronal and Mixed Neuronal-glial Tumors</td>
<td>2 (0.01)</td>
<td>0.1 (0.1)</td>
<td>21 (0.27)</td>
<td>0.55 (0.24)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pineal Tumors</td>
<td>2 (0.01)</td>
<td>0.1 (0.1)</td>
<td>11 (0.14)</td>
<td>0.29 (0.12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germ Cell Tumors</td>
<td>NR</td>
<td></td>
<td>8 (0.1)</td>
<td>0.21 (0.08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choroid Plexus Tumors</td>
<td>2 (0.01)</td>
<td>0.1 (0.1)</td>
<td>3 (0.04)</td>
<td>0.08 (0.04)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total 31530 (100) 1501.4 (487) 7910 (100) 208.15 (83.48)

Possible errors in the data include:

- The average percentages do not add up to 100% due to rounding.
- The average percentages may not reflect the exact distribution of cases.
- There may be slight discrepancies in the reported cases due to rounding or data entry errors.

Predominant tumor types reported in individual countries

The most common reported tumor types for each country included in this study were identified, (Table 1). As expected, the majority of countries reported CNS tumors mainly as unclassified in their cancer registries.
The exceptions for this were Thailand (63 cases, 53.8%), Jordan (98 cases, 57%), Saudi Arabia (116 cases, 41.3%) and Pakistan (277 cases, 53.5%), who reported Astrocytic tumors as the most frequent type. For data recovered from PubMed, Astrocytic tumors predominated Bosnia and Herzegovina (16 cases, 53.3%), Croatia (40 cases, 70.2%), Hungary (14 cases, 42.4%), Morocco (34 cases, 43%) and India (66 cases, 94.3%). Meningeal tumors predominated China (180 cases, 26.3%), Lithuania (117 cases, 33.6%) and Bangladesh (8 cases, 88.9%). Gliomas (Not WHO Classified) tumors were most frequent in Thailand (61 cases, 69.3%), Latvia (45 cases, 100%), and Egypt (60 cases, 36.1 %). Pituitary Tumors were the most reported type in Romania (142 cases, 84.5%), Turkey (146 cases, 60.3%), Chile (3 cases, 50%), Colombia (47 cases, 79.7%) and Pakistan (282 cases, 75.0%), while Embryonal tumors were the most published type in Brazil (37 cases, 97.4%) and South Africa (2 cases, 50%) and Ependymal tumors were most common in Poland (39 cases, 53.4%).

CNS tumor cases reported via cancer registries

Percentage ordered cases for all reported histopathologically distinguished types of CNS tumors identified through cancer registries showed an overwhelming majority of reported cases to be WHO unclassified (30311 cases, 96.1%), (Table 2). The data for unclassified tumor cases showed a huge variation of reported cases between countries, ranging between a 25-percentage of 77 to a 75-percentage of 2123 and a standard deviation of ±493.0. The top three reported types were astrocytic tumors (627 cases, 1.99%), gliomas (not WHO classified) (154 cases, 0.49 %) and embryonal tumors (107 cases, 0.34%), the least reported types were tumors of cranial and paraspinal nerves (1 case, 0.05%). Only 12 WHO classified categories were noted.

CNS tumor cases reported via pubmed

For CNS tumor cases identified via PubMed publications 17 WHO CNS tumor categories were noted, (Table 2). Collected data for all tumor cases showed a tighter variation of reported cases between countries ranging between a 25-percentage of 5.3 to a 75-percentage of 155 and a standard deviation of ±83.48. Under half of cases (3612 cases, 45.6 %) were unclassified and were labeled as brain and/or CNS tumors. The top three reported types were astrocytic tumors (1245 cases, 15.7%), pituitary tumors (792 cases, 10.0%) and meningeval tumors (544 cases, 6.88%). the least reported types were choroid plexus tumors (3 cases, 0.04%).

Latitude as a possible risk factor for CNS tumors in developing countries

Several environmental risk factors have been associated with the epidemiology of CNS tumors including ionizing radiation (dental X-rays, CT-scans) (Braganza et al., 2012; Claus et al., 2012; Isaacs, 2013), bisphenol (Zhu et al., 2010), N-nitroso compounds (Huncharek, 2010), pesticides (Searles Nielsen et al., 2010), reproductive hormones (Michaud et al., 2010), JC-virus (Noch et al., 2012), human herpes-viruses (Kofman et al., 2011), and ELF-EMF exposure (Kheifets et al., 2010; Baldi et al., 2011). Previous work had shown a association for the occurrence of melanoma (Crocutti et al., 2012), colorectal cancers (Cuomo et al., 2013), lymphoid neoplasms (van Leeuwen et al., 2013) and others (Grant, 2012) with geographical parameters. A linear regression analysis showed a significant relationship between the natural logs of CNS tumors ASR data sourced by Globocan for 169 WHO registered countries and latitude ranging from -40 till 0 degrees (F (2,32)=4.66, p=0.03) (Figure 2aii). The analysis suggested that the counts of CNS tumor cases increased as the coordinates move away from the equator (Degree 0) in both directions. In contrast, there was no significant relationship observed between the natural logs of CNS tumor incidence ASR of all countries and longitude (F (2,169)=1.04, p=0.30) (Figure 2aii). A similar pattern was observed for data representing developing countries, where a significant linear regression relationship was observed between the natural logs of CNS tumors ASR data sourced by Globocan for 126 WHO registered developing countries and latitudes ranging from -40 till 0 degrees (F (2,25)=4.40, p=0.04) (Figure 2bi), and for latitudes ranging from 0 till 70 degrees (F (2,101)=27.5, p=0.00 (Figure 2bi). No significant relationship was observed between the natural logs of CNS tumors ASR data sourced by Globocan for 126 WHO registered developing countries and longitudes ranging from -40 till 0 degrees (F (2,25)=1.04, p=0.30) (Figure 2bii).

Figure 2. Scatter Blots for the Natural Logs of CNS Tumors Counts Verses Geographical Coordinates of WHO Registered Countries. a) The natural logs of Globocan reported incidence ASR (Ln) for all CNS tumors from 169 countries versus i) Latitudes of countries south the equator, (-40 to 0°), ii) Latitudes of countries north the equator, (0 to 70°), or iii) Longitudes. The natural logs of Globocan reported incidence ASR (Ln) for all CNS tumors from 126 developing countries versus i) Latitudes of countries south the equator, (-40 to 0°), ii) Latitudes of countries north the equator, (0 to 70°), or iii) Longitudes.
data and longitudes of developing countries (Figure 2biii). Analysis of Astrocytic tumors counts sourced by PubMed showed a comparable pattern (Figure 2c), where natural logs of counts had a significant linear regression relationship with latitudes ranging from 0 till 70 degrees (F (2, 25)=5.69, p=0.02) (Figure 2cii). There was no significant relationship between the natural logs of Astrocytic tumor counts and longitude (F (2, 25)=0.51, p= 0.48) (Figure 2cii).

Discussion

This study aimed to show epidemiological trends of individually reported CNS tumors subtypes in developing countries. Through a cyber-search approach, it was possible to elucidate trends of frequencies for individually classified CNS tumors and show patterns that were otherwise unavailable. Our data shows that the majority of reported cases from PubMed and cancer registries were for unclassified tumors. For classified tumors, Astrocytic tumors appear to be the most reported type. Interestingly, a relationship between geographical location and the occurrence of CNS tumors may exist.

Unfortunately, out of 149 developing countries only 66 registries representing 21 countries reported any information related to CNS tumors, confirming previous observations for the lack of reporting for CNS tumors in the developing region (Ferlay et al., 2010; Qaddoumi et al., 2011). The degree of reporting for tumors maybe linked to the level of socio–economic development for any particular country. The quality of data collected from the identified registries was poor compared to data retrieved from PubMed publications. We ensured that included PubMed publications were sourced by clearly individual hospitals or health sectors, and did not produce repetition or overlap of cases. Importantly, data produced from PubMed showed a larger range of tumor classification that was not detected in cancer registries. One problem was the lack of gender or age categorization for declared tumors in publications. Another caveat of retrieving data from such source is the hypothetical bias of results towards research interest in a particular type of tumors. However, our method of selecting published papers was intended to focus on country related data and not any particular tumor classification.

Alarmingly, the majority of reported cases were unclassified (PubMed (45.6%), registries (96.1%)) consistent with the notion that reporting unclassified cancer variants is a growing phenomenon (Tavtigian et al., 2008). This could be a reflection of routed miscommunication between clinicians and statistical departments. It is possible that the epidemiological context for each of these bodies is different. While clinicians and pathologists are more concerned with understanding disease classifications to make crucial decisions involving management of treatment (Tavtigian et al., 2008), reporting statistical departments may be more concerned with “number of cases” in general. In addition, reporting classified tumors is more complex and involves extra documentations, such as pathological reports for classified tumors (Jensen and Storm, 1991). Unfortunately, such vague reporting systems hamper sharing of detailed medical knowledge and perhaps hinder the development of effective targeted medical management programs.

The retrieved data from PubMed shows that the top three reported types of CNS tumors were Astrocytic tumors, Pituitary tumors and Meningeal tumors. Reasons for the high frequency of Astrocytic tumors are generally not explained (Karipidis et al., 2007). It is possible that since Astrocytic tumors have devastating outcomes with poor survival, more researchers are interested to study them and thus there is more reporting in PubMed, however, Astrocytic tumors were also the most frequently reported type in cancer registries. Another consideration is the complexity of classification for astrocytic tumors, as several different histological categories of variants exist (Wen and Kesari, 2008; Adesina et al., 2010; Karsy et al., 2012) raising the possibility of effect due to increased size of grouping.

Interestingly, when analyzing the relationship between the natural logs of CNS tumors incidence ASR for all WHO registered countries including developing countries verses latitude, or for the natural logs of counts for Astrocytic tumors verses latitude, positive correlations emerged. A similar association has been observed for other tumors (Crocetti et al., 2012; Grant, 2012; Cuomo et al., 2013; van Leeuwen et al., 2013). Latitude effect may be associated with several factors such as UV irradiation, Vitamin D biosynthesis or geographical differences for regional health systems.

In conclusion, reporting epidemiological data for unclassified CNS tumors is a growing phenomenon in the developing world that contradicts the attitude of health professionals to deal with CNS tumors as a collection of independent tumors, of which each requires a targeted health management plan. Unfortunately, Globocan reports treated epidemiological data for CNS tumors within a single category, and only a few cancer registries for developing countries provided information related to the incidences of defined histological CNS tumors types. Through the retrieval of CNS tumor cases using ISI PubMed publications, overall frequencies for individually classified CNS tumors in 38 different countries were elucidated. Patterns associated with frequencies and ranking of classified tumors were deduced as well as novel data implicating an association between individual CNS tumors, such as astrocytic tumors, with geographical location. A consensus for future reporting of CNS tumors incidences need to be established in order to help progress prospects of CNS tumors’ health management.

Acknowledgements

This work is supported by grant HiCi 1434-117-11 issued from the Dean of Scientific Research body in King Abdulaziz University.

References

Epidemiology of Central Nervous System Tumors in Developing Countries

DOI:http://dx.doi.org/10.7314/APJCP.2015.16.1.205

