DOI QR코드

DOI QR Code

Ex vivo Digestion of Milk from Red Chittagong Cattle Focusing Proteolysis and Lipolysis

  • Islam, Mohammad Ashiqul (Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences) ;
  • Ekeberg, Dag (Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences) ;
  • Rukke, Elling-Olav (Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences) ;
  • Vegarud, Gerd Elisabeth (Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences)
  • Received : 2014.04.11
  • Accepted : 2014.09.04
  • Published : 2015.04.01

Abstract

Ex vivo digestion of proteins and fat in Red Chittagong Cattle milk from Bangladesh was carried out using human gastrointestinal enzymes. This was done to investigate the protein digestion in this bovine breed's milk with an especial focus on the degradation of the allergenic milk proteins; ${\alpha}_{s1}$-casein and ${\beta}$-lactoglobulin and also to record the generation of peptides. Lipolysis of the milk fat and release of fatty acids were also under consideration. After 40 min of gastric digestion, all the ${\alpha}_s$-caseins were digested completely while ${\beta}$-lactoglobulin remained intact. During 120 min of duodenal digestion ${\beta}$-lactoglobulin was reduced, however, still some intact ${\beta}$-lactoglobulin was observed. The highest number of peptides was identified from ${\beta}$-casein and almost all the peptides from ${\kappa}$-casein and ${\beta}$-lactoglobulin were identified from the gastric and duodenal samples, respectively. No lipolysis was observed in the gastric phase of digestion. After 120 min of duodenal digestion, milk fat showed 48% lipolysis. Medium (C10:0 to C16:0) and long (${\geq}C17:0$) chain fatty acids showed 6% to 19% less lipolysis than the short (C6:0 to C8:0) chain fatty acids. Among the unsaturated fatty acids $C18:1{\sum}others$ showed highest lipolysis (81%) which was more than three times of $C18:2{\sum}all$ and all other unsaturated fatty acids showed lipolysis ranging from 32% to 38%. The overall digestion of Bangladeshi Red Cattle milk was more or less similar to the digestion of Nordic bovine milk (Norwegian Red Cattle).

Keywords

Gastric Digestion;Duodenal Digestion;${\alpha}_{s1}$-Casein;${\beta}$-Lactoglobulin;Peptide;Fatty Acid

References

  1. Abd El-Salam, M. H. and S. El-Shibiny. 2011. A comprehensive review on the composition and properties of buffalo milk. Dairy Sci. Technol. 91:663-699. https://doi.org/10.1007/s13594-011-0029-2
  2. Almaas, H., A.-L. Cases, T. G. Devold, H. Holm, T. Langsrud, L. Aabakken, T. Aadnoey, and G. E. Vegarud. 2006. In vitro digestion of bovine and caprine milk by human gastric and duodenal enzymes. Int. Dairy J. 16:961-968. https://doi.org/10.1016/j.idairyj.2005.10.029
  3. Almaas, H., E. Eriksen, C. Sekse, I. Comi, R. Flengsrud, H. Holm, E. Jensen, M. Jacobsen, T. Langsrud, and G. E. Vegarud. 2011. Antibacterial peptides derived from caprine whey proteins, by digestion with human gastrointestinal juice. Br. J. Nutr. 106:896-905. https://doi.org/10.1017/S0007114511001085
  4. Angers, P., E. Tousignant, A. Boudreau, and J. Arul. 1998. Regiospecific analysis of fractions of bovine milk fat triacylglycerols with the same partition number. Lipids 33:1195-1201. https://doi.org/10.1007/s11745-998-0323-6
  5. Armand, M. 2007. Lipases and lipolysis in the human digestive tract: where do we stand? Curr. Opin. Clin. Nutr. Metab. Care. 10:156-164. https://doi.org/10.1097/MCO.0b013e3280177687
  6. Blasi, F., D. Montesano, M. De Angelis, A. Maurizi, F. Ventura, L. Cossignani, M. S. Simonetti, and P. Damiani. 2008. Results of stereospecific analysis of triacylglycerol fraction from donkey, cow, ewe, goat and buffalo milk. J. Food Compost. Anal. 21:1-7. https://doi.org/10.1016/j.jfca.2007.06.005
  7. Carriere, F., J. Barrowman, R. Verger, and R. Laugier. 1993. Secretion and contribution to lipolysis of gastric and pancreatic lipases during a test meal in humans. Gastroenterology 105:876-888. https://doi.org/10.1016/0016-5085(93)90908-U
  8. Carriere, F., Y. Gargouri, H. Moreau, S. Ransac, E. Rogalska, and R. Verger. 1994. Gastric lipases: cellular, biochemical and kinetic aspects. In: Lipases: Their Structure, Biochemistry and Application (Eds. P. Woolley and S. B. Petersen). Cambridge University Press, New York, USA. pp. 181-205.
  9. Devle, H., E. K. Ulleberg, C. F. Naess-Andresen, E.-O. Rukke, G. E. Vegarud, and D. Ekeberg. 2014. Reciprocal interacting effects of proteins and lipids during ex vivo digestion of bovine milk. Int. Dairy J. 36:6-13. https://doi.org/10.1016/j.idairyj.2013.11.008
  10. Furlund, C. B., E. K. Ulleberg, T. G. Devold, R. Flengsrud, M. Jacobsen, C. Sekse, H. Holm, and G. E. Vegarud 2013. Identification of lactoferrin peptides generated by digestion with human gastrointestinal enzymes. J. Dairy Sci. 96:75-88. https://doi.org/10.3168/jds.2012-5946
  11. Gallier, S., A. Ye, and H. Singh. 2012. Structural changes of bovine milk fat globules during in vitro digestion. J. Dairy Sci. 95:3579-3592. https://doi.org/10.3168/jds.2011-5223
  12. Gallier, S., J. Cui, T. D. Olson, S. M. Rutherfurd, A. Ye, P. J. Moughan, and H. Singh. 2013. In vivo digestion of bovine milk fat globules: Effect of processing and interfacial structural changes. I. Gastric digestion. Food Chem. 141:3273-3281.
  13. Gass, J., H. Vora, A. F. Hofmann, G. M. Gray, and C. Khosla. 2007. Enhancement of dietary protein digestion by conjugated bile acids. Gastroenterology 133:16-23. https://doi.org/10.1053/j.gastro.2007.04.008
  14. Haug, A., A. T. Hostmark, and O. M. Harstad. 2007. Bovine milk in human nutrition-a review. Lipids Health Dis. 6:25. https://doi.org/10.1186/1476-511X-6-25
  15. Hur, S. J., B. O. Lim, E. A. Decker, and D. J. McClements. 2011. In vitro human digestion models for food applications. Food Chem. 125:1-12. https://doi.org/10.1016/j.foodchem.2010.08.036
  16. Inglingstad, R. A., T. G. Devold, E. K. Eriksen, H. Holm, M. Jacobsen, K. H. Liland, E. O. Rukke, and G. E. Vegarud. 2010. Comparison of the digestion of caseins and whey proteins in equine, bovine, caprine and human milks by human gastrointestinal enzymes. Dairy Sci. Technol. 90:549-563. https://doi.org/10.1051/dst/2010018
  17. Islam, M. A., M. K. Alam, M. N. Islam, M. A. S. Khan, D. Ekeberg, E. O. Rukke, and G. E. Vegarud. 2014a. Principal milk components in buffalo, holstein cross, indigenous cattle and Red Chittagong Cattle from Bangladesh. Asian Australas. J. Anim. Sci. 27:886-897. https://doi.org/10.5713/ajas.2013.13586
  18. Islam, M. A., D. Ekeberg, E. O. Rukke, and G. E. Vegarud. 2014b. Ex vivo digestion of omega-3 enriched buffalo skimmed milk. J. Func. Foods. (In press). doi: 10.1016/j.jff.2014.08.016. https://doi.org/10.1016/j.jff.2014.08.016
  19. Jensen, R. G. 2002. The composition of bovine milk lipids: January 1995 to December 2000. J. Dairy Sci. 85:295-350. https://doi.org/10.3168/jds.S0022-0302(02)74079-4
  20. Kopf-Bolanz, K. A., F. Schwander, M. Gijs, G. Vergeres, R. Portmann, and L. Egger. 2012. Validation of an in vitro digestive system for studying macronutrient decomposition in humans. J. Nutr. 142:245-250. https://doi.org/10.3945/jn.111.148635
  21. Maansson, H. L. 2008. Fatty acids in bovine milk fat. Food Nutr. Res. 10.3402/fnr.v52i0.1821. https://doi.org/10.3402/fnr.v52i0.1821
  22. Medhammar, E., R. Wijesinha-Bettoni, B. Stadlmayr, E. Nilsson, U. R. Charrondiere, and B. Burlingame. 2012. Composition of milk from minor dairy animals and buffalo breeds: a biodiversity perspective. J. Sci. Food Agric. 92:445-474. https://doi.org/10.1002/jsfa.4690
  23. Miled, N., S. Canaan, L. Dupuis, A. Roussel, M. Riviere, F. Carriere, A. de Caro, C. Cambillau, and R. Verger. 2000. Digestive lipases: From three-dimensional structure to physiology. Biochimie 82:973-986. https://doi.org/10.1016/S0300-9084(00)01179-2
  24. Miranda, G., M.-F. Mahe, C. Leroux, and P. Martin. 2004. Proteomic tools to characterize the protein fraction of Equidae milk. Proteomics 4:2496-2509. https://doi.org/10.1002/pmic.200300765
  25. Mu, H. and C.-E. Hoy. 2004. The digestion of dietary triacylglycerols. Prog. Lipid Res. 43:105-133. https://doi.org/10.1016/S0163-7827(03)00050-X
  26. Pafumi, Y., D. Lairon, P. L. de la Porte, C. Juhel, J. Storch, M. Hamosh, and M. Armand. 2002. Mechanisms of Inhibition of Triacylglycerol Hydrolysis by Human Gastric Lipase. J. Biol. Chem. 277:28070-28079. https://doi.org/10.1074/jbc.M202839200
  27. Parodi, P. W. 1979. Stereospecific distribution of fatty acids in bovine milk fat triglycerides. J. Dairy Res. 46:75-81. https://doi.org/10.1017/S0022029900016873
  28. Rogalska, E., S. Ransac, and R. Verger. 1990. Stereoselectivity of lipases. II. Stereoselective hydrolysis of triglycerides by gastric and pancreatic lipases. J. Biol. Chem. 265:20271-20276.
  29. Tidona, F., A. Criscione, T. G. Devold, S. Bordonaro, D. Marletta, and G. E.Vegarud. 2014. Protein composition and micelle size of donkey milk with different protein patterns: Effects on digestibility. Int. Dairy J. 35:57-62. https://doi.org/10.1016/j.idairyj.2013.10.018
  30. Ulleberg, E. K. 2011. In vitro Digestion of Caprine Whey Proteins by Human Gastrointestinal Juices: Effect of Whey Hydrolysates and Peptides on In Vitro Cell Responses. PhD thesis, Norwegian University of Life Sciences, Aas, Norway.
  31. Ulleberg, E. K., I. Comi, H. Holm, E. B. Herud, M. Jacobsen, and G. E. Vegarud. 2011. Human gastrointestinal juices intended for use in in vitro digestion models. Food Dig. 2:52-61. https://doi.org/10.1007/s13228-011-0015-4
  32. Ye, A., J. Cui, and H. Singh. 2011. Proteolysis of milk fat globule membrane proteins during in vitro gastric digestion of milk. J. Dairy Sci. 94:2762-2770. https://doi.org/10.3168/jds.2010-4099