Evaluation of Optimum Dietary Threonine Requirement by Plasma Free Threonine and Ammonia Concentrations in Surgically Modified Rainbow Trout, Oncorhynchus mykiss

  • Yun, Hyeonho (Department of Marine Bio-Materials and Aquaculture/Feeds and Foods Nutrition Research Center, Pukyong National University) ;
  • Park, Gunjun (Woosung Feed Co., Ltd.) ;
  • Ok, Imho (Aqua leader, Co., Ltd.) ;
  • Katya, Kumar (Department of Marine Bio-Materials and Aquaculture/Feeds and Foods Nutrition Research Center, Pukyong National University) ;
  • Heung, Silas (Department of Animal Science, University of California) ;
  • Bai, Sungchul C. (Department of Marine Bio-Materials and Aquaculture/Feeds and Foods Nutrition Research Center, Pukyong National University)
  • Received : 2014.07.03
  • Accepted : 2014.11.17
  • Published : 2015.04.01


This study was carried out to evaluate the dietary threonine requirement by measuring the plasma free threonine and ammonia concentrations in rainbow trout, Oncorhynchus mykiss after dorsal aorta cannulation. A total of 70 fish (average initial weight $506{\pm}8.2g$) were randomly distributed into each of the 14 net cages (5 fish/cage). After 48 hours (h) of feed deprivation, each group was intubated at 1% body weight with one of the seven L-amino acid based diets containing graded levels of threonine (0.42%, 0.72%, 0.92%, 1.12%, 1.32%, 1.52%, or 1.82% of diet, dry matter basis). Blood samples were taken at 0, 5, and 24 h after intubation. Post-prandial plasma free threonine concentrations (PPthr) of fish 5 h after intubation with diets containing 1.32% or more threonine were significantly higher than those of fish intubated with diets containing 1.12% or less threonine (p<0.05). Post-absorptive free threonine concentrations (PAthr) after 24 h of intubation of the fish with diets containing 0.92% or more threonine were significantly higher than those of fish intubated with diets containing 0.72% or less threonine. Post-prandial plasma ammonia concentrations (PPA, 5 h after intubation) were not significantly different among fish intubated with diets containing 1.12% or less threonine, except the PPA of fish intubated with diet containing 0.42% threonine. Broken-line model analyses of PPthr, PAthr, and PPA indicated that the dietary threonine requirement of rainbow trout should be between 0.95% (2.71) and 1.07% (3.06) of diet (% of dietary protein on a dry matter basis).


Rainbow Trout;Threonine;Plasma;Dorsal Aorta Cannulation


Supported by : National Fisheries Research and Development Institute


  1. Akiyama, T., S. Arai, and T. Murai. 1985. Threonine, histidine, and lysine requirement of chum salmon fry. Bull. Jpn. Soc. Sci. Fish 51:635-639.
  2. Alam, M. S., S. Teshima, S. Koshio, S. Yokoyama, and M. Ishikawa. 2003. Optimum dietary threonine level for juvenile Japanese founder, Paralichthys olivaceus. Asian Fish. Sci. 16:175-184.
  3. Bae, J. Y., I. H. Ok, S. Lee, S. S. O. Hung, T. S. Min, and S. C. Bai. 2011. Re-evaluation of dietary methionine requirement by plasma methionine and ammonia concentrations in surgically modified rainbow trout, Oncorhynchus mykiss. J. Appl. Ichthyol. 27:887-891.
  4. Bai, S. C., I. H. Ok, G. J. Park, K. W. Kim, and S. M. Choi. 2003. Development of modeling system for assessing essential amino acid requirements using surgically modified rainbow trout. J. Aquac. 16:1-7.
  5. Bodin, N., M. Mambrini, J. B. Wauters, T. Abboudi, W. Ooghe, E. L. Boulenge, Y. Larondelle, and X. Rollin. 2008. Threonine requirements for rainbow trout (Oncorhynchus mykiss) and Atlantic salmon, (Salmo salar) at the fry stage are similar. Aquaculture 274:353-365.
  6. Boren, R. S. and M. Gatlin. 1995. Dietary threonine requirement of juvenile red drum Sciaenops ocellatus. J. World Aquac. Soc. 3:279-283.
  7. Dabrowski, K. 1982. Postprandial distribution of free amino acids between plasma and erythrocytes of common carp (Cyprinus carpio L.). Comp. Biochem. Physiol. Part A Physiol. 72A:753-763.
  8. Halver, J. E. and W. E. Shanks. 1960. Nutrition of salmonoid fishes: VIII. Indispensable amino acids for sockeye salmon. J. Nutr. 72:340-346.
  9. Houston, A. H. 1990. Blood and circulation. In: Methods for Fish Biology (Eds. C. B. Schreck and P. B. Moyle). American Fisheries Society, New York, USA. pp. 273-343.
  10. Kaushik, S. J., B. Fauconneau, L. Terrier, and J. Gras. 1988. Arginine requirement and status assessed by different biochemical indices in rainbow trout (Salmo gairdneri R.). Aquaculture 70:75-95.
  11. Kim, K. I. 1997. Reevaluation of protein and amino acid requirements of rainbow trout (Oncorhynchus mykiss). Aquaculture 151:3-7.
  12. Kim, K. I., T. B. Kayes, and C. H. Amundson. 1992. Requirements for sulfur amino acids and utilization of D-methionine by rainbow trout (Oncorhynchus mykiss). Aquaculture 101:95-103.
  13. Koshio, S., S. Teshima, A. Kanazawa, and T. Watase. 1993. The effect of dietary protein content on growth, digestion efficiency and nitrogen excretion of juvenile kuruma prawns, Penaeus japonicus. Aquaculture 113:101-114.
  14. Ng, W. K. and S. S. O. Hung. 1995. Estimating the ideal dietary indispensable amino acid pattern for growth of white sturgeon, Acipenser transmontanus (Richardson). Aquac. Nutr. 1:85-94.
  15. Ogino, C. 1980. Requirements of carp and rainbow trout for essential amino acids. Bull. Jpn. Soc. Sci. Fish. 46:171-174.
  16. Robbins, K. R., H. W. Norton, and D. H. Baker. 1979. Estimation of nutrient requirements from growth data. J. Nutr. 109:1710-1714.
  17. Robinson, E. H., R. P. Wilson, and W. E. Poe. 1981. Arginine requirement and apparent absence of a lysine-arginine antagonist in fingerling channel catfish. J. Nutr. 111:46-52.
  18. Rodehutscord, M., J. Stephan, P. Michael, and P. Ernst. 1995. Growing from 50 to 150 g to supplements of DL-methionine in a semipurified diet containing low or high levels of cystine. J. Nutr. 125:964-969.
  19. Rodehutscord, M., A. Becker, M. Pack, and E. Pfeffer. 1997. Response of rainbow trout (Oncorhynchus mykiss) to supplements of individual essential amino acids in a semipurified diet, including an estimate of the maintenance requirement of essential amino acids. J. Nutr. 126:1166-1175.
  20. Rollin, X., M. Mambrini, T. Abboudi, Y. Larondelle, and S. Kaushik. 2003. The optimum dietary indispensable amino acid pattern for growing Atlantic salmon (Salmo salar L.) fry. Br. J. Nutr. 90:865-876.
  21. Ruchimat, T., T. Masumoto, H. Hosokawa, Y. Itoh, and S. Shimeno. 1997. Quantitative lysine requirement of yellowtail (Seriola quinqueradiata). Aquaculture 158:331-339.
  22. Schuhmacher, A., V. Wax, and J. M. Gropp. 1997. Plasma amino acids in rainbow trout (Oncorhynchus mykiss) fed intact protein or a crystalline amino acid diet. Aquaculture 151:15-28.
  23. Sunde, J., A. Kiessling, D. Higgs, J. Opstvedt, G. Venturini, and K. R. Torrissen. 2003. Evaluation of feed protein quality by measuring plasma free amino acids in Atlantic salmon (Salmo salar L.) after dorsal aorta cannulation. Aquac. Nutr. 9:351-360.
  24. Thebault, H., E. Alliota, and A. Pastoureauda. 1985. Quantitative methionine requirement of juvenile sea-bass (Dicentrarchus labrax). Aquaculture 50:75-87.
  25. Tibaldi, E. and F. Tulli. 1999. Dietary threonine requirement of juvenile European sea bass (Dicentrarchus labrax). Aquaculture 175:155-166.
  26. Wilson, R. P. 2002. Amino acids and proteins. In: Fish Nutrition (J. E. Halver, and R. W. Hardy). 3rd ed., Academic Press, San Diego, CA, USA. pp. 143-179.
  27. Zhou, Q. C., Z. H. Wu, S. Y. Chi, and Q. H. Yang. 2007. Dietary lysine requirement of juvenile cobia (Rachycentron canadum). Aquaculture 273:634-640.
  28. Zicker, S. C. and Q. R. Rogers. 1990. Use of plasma amino acid concentration in the diagnosis of nutritional and metabolic diseases in veterinary medicine. In: Proc. 6th Congress Internat (Ed. J. J. Kanedo). Society for Animal Clinical Biochemistry, Davis, CA, USA. pp. 107-212.