Application of Capacitive Deionization Packed Ion Exchange Resins in Two Flow Channels

두 가지 유로 형태에 따라 이온교환수지를 채운 축전식 탈염기술

  • Lee, Dong-Ju (Department of Environmental Engineering, College of Engineering, Sangmyung University) ;
  • Park, Jin-Soo (Department of Environmental Engineering, College of Engineering, Sangmyung University)
  • 이동주 (상명대학교 환경공학과) ;
  • 박진수 (상명대학교 환경공학과)
  • Received : 2015.01.20
  • Accepted : 2015.02.07
  • Published : 2015.02.28


To desalinate the aqueous solutions with high salt concentration using the capacitive deionization technology, two resin/membrane capacitive deionization(RMCDI) cells were fabricated by filling mixed ion exchange resins in two different flow channels (spacer and spiral type). The salt removal efficiency of the spacer- and spiral-RMCDI was 77.21 and 99.94%, respectively. Many ions were significantly removed in a spiral RMCDI cell because the feed solution could be more evenly contacted with the ion exchange resins filled on the spiral type flow channel. As the result of the changes of pH and accumulative charges, it was observed that Faradaic reaction was diminished for a spiral RMCDI cell filled by the mixture of cation and anion exchange resins. Therefore, the desalination of the aqueous solutions with high salt concentration by the capacitive deionization technology was proven. In addition, further studies on the optimization of the mixing ratio with ion exchange resins and the introduction of the regeneration process generally occurred in the continuous electrodeionization (CEDI) technology are required to improve the RMCDI technology.


Supported by : 상명대학교


  1. Y. Oren, "Capacitive deionization (CDI) for desalination and water treatment - past, present and future (a review)", Desalination, 228, 10 (2008).
  2. M. A. Anderson, A. L. Cudero, J. Palma, "Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: will it compete?", Electrochim. Acta, 55, 3845 (2010).
  3. B.-R. Lee, I.-J. Jeong, S.-G. Park, "Effects of N & P Treatment Based on Liquid Organic Materials for Capacitive Deionization(CDI)", J. Korean Electrochem. Soc., 16, 124 (2013).
  4. J.-H. Choi, "Determination of the electrode potential causing Faradaic reactions in membrane capacitive deionization", Desalination, 347, 224 (2014).
  5. J.-W. Lee, H.-I. Kim, H.-J. Kim, H.-S. Shin, J.-S. Kim, B.-I. Jeong, S.-G. Park, "Desalination Effects of Capacitive Deionization Process Using Activated Carbon Composite Electrodes", J. Korean Electrochem. Soc., 12, 287 (2009).
  6. S. Porada, R. Zhao, A. van der Wal, V. presser, P. M. Biesheuvel, "Review on the science and technology of water desalination by capacitive deionization", Prog. Mater. Sci., 58, 1388 (2013).
  7. J.-Y. Lee, S.-J. Seo, J.-W. Park, S.-H. Moon, "A Study on the Cell Structure for Capacitive Deionization System", Korean Chem. Eng. Res., 48, 791 (2010).
  8. R. Zhao, O. Satpradit, H. H. M. Rijnaarts, P. M. Biesheuvel, A. van der Wal, "Optimization of salt adsorption rate in membrane capacitive deionization", Water Res., 47, 1941 (2013).
  9. H. Li, Y. Gao, L. Pan, Y. Zhang, Y. Chen, Z. Sun, "Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes", Water Res., 42, 4923 (2008).
  10. B. Jia, L. Zou, "Graphene nanosheets reduced by a multistep process as high-performance electrode material for capacitive deionisation", Carbon, 50, 2315 (2012).
  11. J. C. Farmer, D. V. Fix, G. C. Mack, R. W. Pekala, J. F. Poco, "Capacitive Deionization of NaCl and NaNO3 Solutions with Carbon Aerogel Electrodes", J. Electrochem. Soc., 143, 159 (1996).
  12. Y.-J. Kim, J.-H. Kim, J.-H. Choi, "Selective removal of nitrate ions by controlling the applied current in membrane capacitive deionization (MCDI)" J. Memb. Sci., 429, 52 (2013).
  13. P. M. Biesheuvel, A. van der Wal, "Membrane capacitive deionization", J. Colloid Interface Sci., 360, 239 (2011).
  14. Y.-J. Kim, J.-H. Choi, "Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer", Water Res., 44, 990 (2010).
  15. K.-S. Kang, W.-K. Son, J.-H. Choi, N.-S. Park, T.-I. Kim, "Ion-Selective Capacitive Deionization Composite Electrode, and Method for Manufacturing a Module", U.S. Patent No. EP 2487278, 1 (2012).
  16. D.-J. Lee, M.-S. Kang, S.-H. Lee, J.-S. Park, "Application of Capacitive Deionization for Desalination of Mining Water", J. Korean Electrochem. Soc., 17, 37 (2014).
  17. J.-H. Yeo, J.-H. Choi, "Enhancement of nitrate removal from a solution of mixed nitrate, chloride and sulfate ions using a nitrate-selective carbon electrode", Desalination, 320, 10 (2013).
  18. S.-I. Jeon, H.-R. Park, J.-G. Yeo, S.-C. Yang, C.-H. Cho, M.-H. Han, D.-K. Kim, "Desalination via a new membrane capacitive deionization process utilizing flowelectrodes." Energy Environ. Sci., 6, 1471 (2013).
  19. D. R. Merrill, M. Bikson, J. G. R. Jefferys, "Electrical stimulation of excitable tissue: design of efficacious and safe protocols", J. Neurosci. Methods, 141, 171 (2005).
  20. D.-J. Lee, J.-S. Park, "Mesoporous Carbon Electrodes for Capacitive Deionization", J. Korean Electrochem. Soc., 17, 57 (2014).
  21. J.-Y Choi, J.-H. Choi. "A carbon electrode fabricated using a poly(vinylidene fluoride) binder controlled the Faradaic reaction of carbon powder", J. Ind. Eng. Chem., 16, 401 (2010).
  22. J.-W. Lee, K.-H. Yeon, J.-H. Song, S.-H. Moon, "Characterization of electroregeneration and determination of optimal current density in continuous electrodeionization", Desalination, 207, 276 (2007).
  23. J.-H. Song, K.-H. Yeon, S.-H. Moon, "Effect of current density on ionic transport and water dissociation phenomena in a continuous electrodeionization (CEDI)", J. Memb. Sci., 291, 165 (2007).