DOI QR코드

DOI QR Code

Electrochemical Characteristics of Silicon/Carbon Composites for Anode Materials of Lithium Ion Batteries

리튬이온배터리 음극활물질 Silicon/Carbon 복합소재의 전기화학적 특성

  • Received : 2014.10.29
  • Accepted : 2014.11.20
  • Published : 2015.02.10

Abstract

Silicon/carbon composites as anode materials for lithium-ion batteries were examined to find the cycle performance and capacity. Silicon/carbon composites were prepared by a two-step method, including the magnesiothermic reduction of SBA-15 (Santa Barbara Amorphous material No. 15) and carbonization of phenol resin. The electrochemical behaviors of lithium ion batteries were characterized by charge/discharge, cycle, cyclic voltammetry and impedance tests. The improved electrochemical performance attributed to the fact that silicon/carbon composites suppress the volume expansion of the silicon particles and enhance the conductivity of silicon/carbon composites (30 ohm) compared to that of using the pure silicon (235 ohm). The anode electrode of silicon/carbon composites showed the high capacity approaching 1,348 mAh/g and the capacity retention ratio of 76% after 50 cycles.

Keywords

Silicon/carbon;Anode material;SBA-15;magnesiothermic reduction;Lithium ion battery

References

  1. Y. Hwa, C. M. Park, and H. J. Sohn, Modified SiO as a high performance anode for Li-ion batteries, J. Power Sources, 222, 129-134 (2013). https://doi.org/10.1016/j.jpowsour.2012.08.060
  2. J. Wang, H. Zhao, J. He, C. Wang, and J. Wang, Nano-sized SiOx/C composite anode for lithium ion batteries, J. Power Sources, 196, 4811-4815 (2011). https://doi.org/10.1016/j.jpowsour.2011.01.053
  3. Y. Yang, W. J. Peng, H. J. Guo, Z. X. Wang, X. H. Li, Y. Y. Zhou, and Y. J. Liu, Effects of modification on performance of natural graphite coated by $SiO_2$ for anode of lithium ion batteries, Trans. Nonferrous Met. Soc. China, 17, 1339-1342 (2007). https://doi.org/10.1016/S1003-6326(07)60273-8
  4. T. Zhang, J. Gao, H. P. Zhang, L. C. Yang, Y. P. Wu, and H. Q. Wu, Preparation and electrochemical properties of core-shell Si/SiO nanocomposite as anode material for lithium ion batteries, Electrochem. commun., 9, 886-890 (2007). https://doi.org/10.1016/j.elecom.2006.11.026
  5. S. H. Moon, W. J. Jin, and T. R. Kim, Performance of Graphite Electrode Modified with Carbon Nanofibers for Lithium Ion Secondary Battery, J. Ind. Eng. Chem., 11(4), 594-602 (2005).
  6. M. Zhang, X. Hou, J. Wang, M. Li, and X. Liu, Interweaved Si@C/CNTs&CNFs compsosites as anode materials for Li-ion batteries, J. Alloys Compd., 13 (2013).
  7. Y. Hwa, W.-S. Kim, B.-C. Yu, J.-H. Kim, S.-H. Hong, and H.-J. Sohn, Facile synthesis of Si nanoparticles using magnesium silicide reduction and its carbon composite as a high-performance anode for Li ion batteries, J. Power Sources, 252, 144-149 (2014). https://doi.org/10.1016/j.jpowsour.2013.11.118
  8. G. X. Wang, J. H. Ahn, J. Yao, S. Bewlay, and H. K. Liu, Nanostructured Si-C composite anodes for lithium-ion batteries, Electrochem. commun., 6, 689-692 (2004). https://doi.org/10.1016/j.elecom.2004.05.010
  9. C. Du, M. Chen, L. Wang, and G. Yin, Covalently-functionaliizing synthesis of Si@C core-shell nanocomposites as high-capacity anode materials for lithium-ion batteries, J. Mater. Chem, 21, 15692 (2011). https://doi.org/10.1039/c1jm12368h
  10. H. C. Tao, L. Z. Fan, and X. Qu, Facile synthesis of ordered Si@C nanorods as anode materials for Li ion batteries, Electrochim. Acta, 71, 194-200 (2012). https://doi.org/10.1016/j.electacta.2012.03.139
  11. T. Madhuri, I. Mark, L. S. Steven, S. W. Michael, and L. B. Sibani, Gold-coated porous silicon films as anodes ofr lithium ion batteries, J. Power Sources, 205, 426-432 (2012). https://doi.org/10.1016/j.jpowsour.2012.01.058
  12. X. Y. Zhou, J. J. Tang, J. Yang, J. Xie, and L. L. Ma, Silicon@carbon holow core-shell heterostructures novel anode materials for lithium ion batteries, Electrochim. Acta, 87, 663-668 (2013). https://doi.org/10.1016/j.electacta.2012.10.008
  13. I. Hong, B. Scrosati, and F. Croce, Mesoporous, Si/C composite anode for Li battery obtained by 'magnesium-thermal' reduction process, Solid State Ionics, 232, 24-28 (2013). https://doi.org/10.1016/j.ssi.2012.11.003
  14. M. Guo, X. Zou, H. Ren, F. Muhammad, C. Huang, S. Qiu, and G. Zhu, Fabrication of high surface area mesoporous silicon via magnesiothermic reduction for drug delivery, Microporous Mesoporous Mater., 142(1), 194-201 (2011). https://doi.org/10.1016/j.micromeso.2010.11.036
  15. J. Kaspar, M. Graczyk-Zajac, S. Lauterbach, H. Kleebe, and R. Riedel, Silicon oxycarbide/nano-silicon composite anodes for Li-ion batteries: Considerable influence of nano-crystalline vs. nano-amorphous silicon embedment on the electrochemical properties, J. Power Sources, 269, 164-172 (2014). https://doi.org/10.1016/j.jpowsour.2014.06.089
  16. M. Su, Z. Wang, H. Guo, X. Li, and W. Xiao, Enhanced cycling performance of Si/C composite prepared by spray-drying as anode for Li-ion batteries, Powder Technol., 249, 105-109 (2013). https://doi.org/10.1016/j.powtec.2013.07.021
  17. M. S. Wang and L. Z. Fan, Silicon/carbon nanocomposite pyrolyzed from phenolic resin as anode materials for lithium-ion batteries, J. Power Sources, 244, 570-574 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.151
  18. M. S. Wang, L. Z. Fan, M. Huang, J. Li, and X. Qu, Conversion of diatomite to porous Si/C composites as promising anode materials for lithium-ion batteries, J. Power Sources, 219, 29-35 (2012). https://doi.org/10.1016/j.jpowsour.2012.06.102
  19. S. Wang, Y. Matsumura, and T. Maeda, A model of the interactions between disordered carbon and lithium, Synthetic Met., 71, 1759-1760 (1995). https://doi.org/10.1016/0379-6779(94)03039-9

Cited by

  1. Synthesis and Electrochemical Characteristics of Mesoporous Silicon/Carbon/CNF Composite Anode vol.26, pp.5, 2015, https://doi.org/10.14478/ace.2015.1056