Numerical Studies of Flow Characteristics and Particle Residence Time in a Taylor Reactor

테일러 반응기의 유동특성과 입자 체류시간에 관한 수치적 연구

  • Received : 2014.10.16
  • Accepted : 2014.11.25
  • Published : 2015.02.10


Using a computational fluid dynamics technique, the flow characteristics and particle residence time in a Taylor reactor were studied. Since flow characteristics in a Taylor reactor are dependent on the operating conditions, effects of the inlet flow velocity and reactor rotational speed were investigated. In addition, the particle residence time of $LiNiMnCoO_2$ (NMC), which is a cathode material in lithium-ion battery, is estimated in the Taylor vortex flow (TVF) region. Without considering the complex chemical reaction at the inlet, the effect of Taylor flow was studied. The results show that the particle residence time increases as the rotating speed increased and the flow rate decreased.


Taylor reactor;Computational Fluid Dynamics;Particle tracking;Taylor vortex flow;Wavy Vortex Flow


  1. M. Davis and E. Weber, Liquid-liquid extraction between rotating concentric cylinders, J. Ind. Eng. Chem., 52, 929-934 (1960).
  2. S. T. Wereley and R. M. Lueptow, Spatio-temporal character of non-wavy and wavy Taylor-Couette flow, J. Fluid Mech., 364, 59-80 (1998).
  3. D. Coles, Transition in circular Couette flow, J. Fluid Mech., 21, 385-425 (1965).
  4. E. L. Koschmieder, Benard cells and Taylor vortices, Cambridge University Press, 219-225 (1993).
  5. C. D. Andereck, S. Liu, and H. L. Swinney, Flow regimes in a circular Couette system with independently rotating cylinders, J. Fluid Mech., 164, 155-183 (1986).
  6. K. Buhler and N. Polifke, Dynamical behaviour of Taylor vortices with superimposed axial flow. Nonlinear Evolution of Spatio-Temporal Structures in Dissipative Continuous Systems, Springer, 21-29 (1990).
  7. R. M. Lueptow, A. Docter, and K. Min, Stability of axial flow in an annulus with a rotating inner cylinder, Phys. Fluids A., 4, 2446-2455 (1992).
  8. S. Chandrasekhar, The stability of spiral flow between rotating cylinders, Proc. R. Soc. Lond. A., 265, 188-197 (1962).
  9. J. Wang, W. B. White, and J. H. Adair, Synthesis of Calcium Carbonate Particles in Octylamine/Water Bilayer Systems, J. KONA Powder and Particle, Doi:10.14356/kona.2014005.
  10. W. M. Jung, S. H. Kang, W. S. Kim, and C. K. Choi, Particle morphology of calcium carbonate precipitated by gas-liquid reaction in a Couette-Taylor reactor, Chem. Eng. Sci., 55, 733-747 (2000).
  11. W. S. Kim, Application of Taylor Vortex to Crystallization, J. Chem. Eng. Jpn., 47, 115-123 (2014).
  12. A. Rochex, J. J. Godon, N. Bernet, and R. Escudie, Role of shear stress on composition, diversity and dynamics of biofilm bacterial communities, Water Res., 42, 4915-4922 (2008).
  13. M. C. Jung and S. G. Weber, Influence of Chemical Kinetics on Postcolumn Reaction in a Capillary Taylor Reactor with Catechol Analytes and Photoluminescence Following Electron Transfer, Anal. Chem., 77, 974-982 (2005).
  14. M. Choi, G. Ham, B. S. Jin, S. M. Lee, Y. M. Lee, G. Wang, and H. S. Kim, Ultra-thin $Al_2O_3$ coating on the acid-treated $0.3Li_2MnO_3$.0.7 $LiMn_{0.60}Ni_{0.25}Co_{0.15}O_2$ electrode for Li-ion batteries, J. Alloy. Compd., 608, 110-117 (2014).
  15. Z. Lu, D. MacNeil, and J. Dahn, Layered Li [$Ni_x$ $Co_{1-2x}$ $Mn_x$] $O_2$ Cathode Materials for Lithium-Ion Batteries, Electrochem. Solid St., 4, A200-A203 (2001).
  16. Fluent Inc., FLUENT 14.5 user's guide (2012).
  17. M. Ebner, F. Geldmacher, F. Marone, M. Stampanoni, and V. Wood, X-Ray Tomography of Porous, Transition Metal Oxide Based Lithium Ion Battery Electrodes, Adv. Energy Mater., 3, 845-850 (2013).
  18. N. D. Azizov and T. S. Akhundov, The bulk properties of the $Na_2SO_4-H_2O$ system in a wide range of the parameters of state, High Temp+., 38, 203-209 (2000).

Cited by

  1. Numerical Study on Fluid Flow Characteristics in Taylor Reactor using Computational Fluid Dynamics vol.40, pp.1, 2016,


Supported by : 한국에너지기술평가원