Preparation and Characterization of Functional Microcapsules Containing Suspensions of Conducting Materials

전도성 물질 서스펜션을 함유한 마이크로캡슐

  • Received : 2014.09.23
  • Accepted : 2014.12.24
  • Published : 2015.02.10


Microcapsules containing the suspension of conducting materials such as carbon nanotube (CNT) or polyaniline (PANI) were prepared by in-situ polymerization of melamine and formaldehyde. Stable microcapsules were prepared and the mean diameter of the observed microcapsules was in the range of $10-20{\mu}m$. The surface morphology and chemical structure of microcapsules were investigated using optical microscope (OM), scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FT-IR). The thermal properties of samples were investigated by thermogravimetric analysis (TGA). The conductivity of ruptured microcapsule containing the suspension of CNTs or PANIs in tetrachloroethylene and Isopar-G was measured. As the amount of CNTs and PANIs in the core of microcapsules increased, the measured current increased. Conductivity measurement results suggest that poly (melamine-formaldehyde) based core-shell microcapsules could be applied to self-healing electronic materials systems, where CNTs or PANIs bridge a broken circuit upon release.


polyaniline;carbon nanotube;poly(melamine-formaldehyde);microcapsules;self-healing


  1. C. Thies, A survey of microencapsulation technology, In: S. Benita (ed.), Microencapsulation: methods and industrial applications, 1-19, Marcel Dekker, NY, USA (1996).
  2. S. K. Ghosh, Functional coatings by polymer microencapsulation, 12-25, Wiley-VCH, Hoboken, USA (2006).
  3. T. Kondo and M. Koish, Microcapsule, 112-140, Sankyo, Tokyo, Japan (1987).
  4. A. Shulkin and H. D. H. Stover, Polymer microcapsules by interfacial polyaddition between styrene-maleic anhydride copolymers and amines, J. Membr. Sci., 209, 421-432 (2002).
  5. Y. I. Huang, Y. H. Cheng, C. C. Yu, T. R. Tsai, and T. M. Cham, Microencapsulation of extract containing shikonin using gelatin-acacia coacervation method: A formaldehyde-free approach, Colloids Surf. B. Biointerfaces, 58, 290-297 (2007).
  6. E. N. Brown, M. R. Kessler, N. R. Sottos, and S. R. White, In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene, J. Microencapsul., 20, 719-730 (2003).
  7. J. M. Jacobson, P. S. Drazaic, and I. D. Morrison, Electrophoretic displays using nanoparticles, US Patent, 6,323,989 (2001).
  8. J. D. Albert, B. Comiskey, J. M. Jacobson. L. Hang, A. Loxley, R. Feeney, P. S. Drazaic, and I. D. Morrison, A multi-color, encapsulated electrophoretic displays and materials for making the same, US Patent, 6,017,584 (2002).
  9. S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R.Sriram, E. N. Brown, and S. Viswanathan, Autonomic healing of polymer composites, Nature, 409, 794-797 (2001).
  10. S. H. Cho, H. M. Andersson, S. R. White, N. R. Sottos, and P. V. Braun, Polydimethylsiloxane-Based Self-Healing Materials, Adv. Mater., 18, 997-1000 (2006).
  11. S. R. White, M. M. Caruso, and J. S. Moore, Autonomic Healing of polymers, MRS Bull., 33, 766-769 (2008).
  12. C. Dry, Procedures developed for self-repair of polymer matrix composite materials, Composite Structures, 35, 263-269 (1996).
  13. M. R. Kessler and S. R. White, Self-activated healing of delamination damage in woven composites, Composites: Part A, 32, 683-699 (2001).
  14. S. Ijima, Helical microtubules of graphitic carbon, Nature, 354, 56-58 (1991).
  15. M. Pumera, Carbon nanotube biosensors based on electrochemical detection, In: K. Balasubramanian and M. Burghard (eds.), Carbon Nanotubes, 205-212, Humana Press, NY, USA (2010).
  16. J. P. Salvetat, G. Desarmot, C. Gauthier, and P. Poulin, J.-P. Salvetat, G. D, Mechanical properties of individual nanotubes and composites, In : A. Loiseau, P. Launois, P. Petit, S. Roche J.-P. Salvetat (eds.), Understanding Carbon Nanotubes, 459-487, Springer-Verlag, Berlin, Germany (2006).
  17. E. T. Thostenson and T.-W. Chou, Carbon nanotube networks: Sensing of distributed strain and damage for life prediction and self healing, Adv. Mater., 18, 2837-2841 (2006).
  18. Z. Yao, H. W. Ch. Poatma, L. Balents, and C. Dekker, Carbon nanotube intramolecular junctions, Nature, 402, 273-276 (1999).
  19. J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, Nanotube molecular wires as chemical sensors, Science, 287, 622-625 (2000).
  20. J. Y. Kim, M. H. Kwon, Y. K. Min, S. Kwon, and D. W. Ihm, Self-assembly and crystalline growth of Poly(3,4-ethylenedioxythiophene) nanofilms, Adv. Mater., 19, 3501-3506 (2007).
  21. M. Wan, Conducting Polymers with Micro or Nanometer Structure, 16-21, Springer, NY, USA (2008).
  22. M. Keller, Encapsulation-based self-healing polymers and composites, In: W.Hayes, and B.W.Greenland (eds.), Healable Polymer Systems, 16-57, Royal Society of Chemistry, Cambridge, UK (2013).
  23. S. A. Odom, M. M. Caruso, A. D. Finke, A. M. Prokup, J. A. Ritchey, J. H. Leonard, S. R. White, N. R. Sottos, and J. S. Moore, Restoration of conductivity with TTF-TCNQ charge-transfer salts, Adv. Funct. Mater., 20, 1721-1727 (2010).
  24. S. A. Odom, S. Chayanupatkul, B. J. Blaiszik, O. Zhao, A. C. Jackson, P. V. Braun, N. R. Sottos, S. R. White, and J. S. Moore, A self-healing conducting ink, Adv. Mater., 24, 2578-2581 (2012).
  25. M. M. Caruso, S. R. Schelkopf, A. C. Jackson, A. M. Landry, P. V. Braun, and J. S. Moore, Microcapsules containing suspensions of carbon nanotubes, J. Mater. Chem., 19, 6093-6096 (2009).
  26. Y. H. Lee, C. A. Kim, W. H. Jang, H. J. Choi, and M. S. Son, Synthesis and electrorheological characteristics of microencapsulated polyaniline particles with melamine-formaldehyde resins, Polymer, 42, 8277-8283 (2001).
  27. V. G. Kulkami, L. D. Campbell, and W. R. Mathew, Thermal stability of polyaniline, Synth. Met., 30, 321-325 (1989).
  28. P. V. Kamat, K. G. Thomas, S. Barazzouk, G. Girishkumar, K. Vinodgopal, and D. Meisel, Self-assembled linear bundles of single wall carbon nanotubes and their alignment and deposition as a film in a dc field, J. Am. Chem. Soc., 126, 10757-10762 (2004).
  29. M. S. Kumar, S. H. Lee, T. Y. Kim, T. H. Kim, S. M. Song, J. W. Yang, K. S. Nahm, and E. K. Suh, DC electric field assisted alignment of carbon nanotubes on metal electrodes, Solid-State Electronics, 47, 2075-2080 (2003).
  30. S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, and E. A. Grulke, Anomalous thermal conductivity enhancement in nanotube suspensions, Appl. Phys. Lett., 79, 2252-2254 (2001).


Supported by : 호서대학교