DOI QR코드

DOI QR Code

OPTIMAL CONTROL FOR BELOUSOV-ZHABOTINSKII REACTION MODEL

  • Ryu, Sang-Uk (Department of Mathematics, Jeju National University)
  • Received : 2014.12.12
  • Accepted : 2015.01.05
  • Published : 2015.01.31

Abstract

This paper is concerned with the optimal control problem for Belousov-Zhabotinskii reaction model. That is, we show the existence of the global weak solution. We also show that the existence of the optimal control.

Keywords

Acknowledgement

Supported by : Jeju National University

References

  1. H. Brezis, Analyse Fronctionnelle, Theorie et Applications, Masson, Paris, 1983.
  2. E. Casas, L. A. Fernandez, and J. Yong, Optimal control of quasilinear parabolic equations, Proc. Roy. Soc. Edinburgh Sect. 125:545-565 (1995). https://doi.org/10.1017/S0308210500032674
  3. R. Dautray and J. L. Lions, Mathematical analysis and numerical methods for science and technology, 5, Springer-Verlag, Berlin, 1992.
  4. M. R. Garvie and C. Trenchea, Optimal control of a nutrient-phytoplankton-zooplankton-fish system, SIAM J. Control Optim. 46(3):775791 (2007).
  5. K. H. Hoffman and L. Jiang, Optimal control of a phase field model for solidification, Numer. Funct. Anal. and Optimiz. 13(1&2):11-27 (1992). https://doi.org/10.1080/01630569208816458
  6. J. P. Keener and J. J. Tyson, Spiral waves in the Belousov-Zhabotinskii reaction, Physica D 21:307-324 (1986). https://doi.org/10.1016/0167-2789(86)90007-2
  7. J. L. Lions, Quelques Methodes de Resolution des Problemes aux Limites Non Lineaires, Dunford/Gauthier-Villars, Paris, 1969.
  8. G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium system From Dissipa-tive Structure to Order through Fluctuations, John Wiley and Sons, New York, 1977.
  9. S.-U. Ryu and A. Yagi, Optimal control of Keller-Segel equations, J. Math. Anal. Appl. 256:45-66 (2001). https://doi.org/10.1006/jmaa.2000.7254
  10. V. K. Vanag and I. R. Epstein, Design and control of patterns in reaction-diffusion systems, CHAOS 18: 026107 (2008). https://doi.org/10.1063/1.2900555
  11. A. Yagi, K.Osaki and T. Sakurai, Exponential attractors for Belousov-Zhabotinskii reaction model, Discrete and continuous Dynamical Systems Suppl:846-856 (2009).
  12. A. Yagi, Abstract parabolic evolution equations and their applications, Springer-Verlag, Berlin (2010).
  13. V. S. Zykov, G. Bordiougov, H. Brandtstadter, I. Gerdes and H. Engel, Golbal dontrol of spiral wave dynamics in an excitable domain of circular and elliptical shape, Phys. Rev. Lett. 92: 018304 (2004). https://doi.org/10.1103/PhysRevLett.92.018304

Cited by

  1. OPTIMALITY CONDITIONS FOR OPTIMAL CONTROL GOVERNED BY BELOUSOV-ZHABOTINSKII REACTION MODEL vol.30, pp.3, 2015, https://doi.org/10.4134/CKMS.2015.30.3.327