Strategies in Protein Immobilization on a Gold Surface

  • Park, Jeho (BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Moonil (BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Received : 2015.01.28
  • Accepted : 2015.01.30
  • Published : 2015.01.30


Protein immobilization on a gold surface plays an important role in the usefulness of biosensors that utilize gold-coated surfaces such as surface plasmon resonance (SPR), quartz crystal microbalance (QCM), etc. For developing high performance biosensors, it is necessarily required that immobilized proteins must remain biologically active. Loss of protein activity and maintenance of its stability on transducer surfaces is directly associated with the choice of immobilization methods, affecting protein-protein interactions. During the past decade, a variety of strategies have been extensively developed for the effective immobilization of proteins in terms of the orientation, density, and stability of immobilized proteins on analytical devices operating on different principles. In this review, recent advances and novel strategies in protein immobilization technologies developed for biosensors are briefly discussed, thereby providing an useful information for the selection of appropriate immobilization approach.


Supported by : National Research Foundation (NRF)


  1. Y. Oh, Y. Lee, J. Heath, and M. Kim, IEEE Sensors J. 15, 637 (2015).
  2. F. Rusmini, Z. Zhong, and J. Feijen, Biomacromolecules 8, 1775 (2007).
  3. Y. Jung, J. Y. Jeong, and B. H. Chung, Analyst 133, 697 (2008).
  4. J. E. Butler, L. Ni, W. R. Brown, K. S. Joshi, J. Chang, B. Rosenberg, and E. W. J. Voss, Mol. Immunol. 30, 1165 (1993).
  5. C. Jianrong, M. Yuqing, H. Nongyue, W Xiaohua, L Sijiao, Biotechnol. Adv. 22, 505 (2004).
  6. S. O. Jung, H. S. Ro, B. H. Kho, Y. B. Shin, M. G. Kim, and B. H. Chung, Proteomics 5, 4427 (2005).
  7. H. B. Pyo, Y. B. Shin, M. G. Kim, and H. C. Yoon, Langmuir 21, 166 (2005).
  8. J. Homola, Anal. Bioanal. Chem. 377, 528 (2003).
  9. M. A. Cooper, Anal. Bioanal. Chem. 377, 834 (2003).
  10. J. Nilsson, S. Stahl, J. Lundeberg, M. Uhlen, and P. Nygren, Protein Express. Purif. 11, 1 (1997).
  11. J. M. Jung, Y. B. Shin, M. G. Kim, H. S. Ro, H. T. Jung, and B. H. Chung, Anal. Biochem. 330, 251 (2004).
  12. T. H. Ha, S. O. Jung, J. M. Lee, K. Y. Lee, Y. Lee, J. S. Park, and B. H. Chung, Anal. Chem. 79, 546 (2007).
  13. S. M. Patrie, and M. Mrksich, Anal. Chem. 79, 5878 (2007).
  14. D. Gao, N. McBean, J. S. Schultz, Y. Yan, A. Mulchandani, and W. Chen, J. Am. Chem. Soc. 128, 676 (2006).
  15. Y. Jung, J. M. Lee, H. Jung, and B. H. Chung, Anal. Chem. 79, 6534 (2007)
  16. J. Park, H. H. Nguyen, A. Woubit, and M. Kim, Appl. Sci. Converg. Technol. 23, 61 (2014).
  17. J. M. Kogot, H. J. England, G. F. Strouse, and T. M. Logan, J. Am. Chem. Soc. 130, 16156 (2008).
  18. P. Peluso, D. S. Wilson, D. Do, H. Tran, M. Venkatasubbaiah, D. Quincy, B. Heidecker, K. Poindexter, N. Tolani, M. Phelan, K. Witte, L. S. Jung, P. Wagner, and S. Nock, Anal. Biochem. 312, 113 (2003).
  19. M. Cretich, F. Damin, G. Pirri, and M. Chiari, Biomol. Eng. 23, 77 (2006).
  20. I. Vikholm-Lundin, and W. M. Albers, Biosens. Bioelectron. 21, 1141 (2006).
  21. B. Y. Kim, C. B. Swearingen, J. A. Ho, E. V. Romanova, P. W. Bohn and J. V. Sweedler, J. Am. Chem. Soc. 129, 7620 (2007).
  22. J. M. Lee, H. K. Park, Y. Jung, J. K. Kim, S. O. Jung, and B. H. Chung, Anal. Chem. 79, 2680 (2007).
  23. E. J. Franco, H. Hofstetter, and O. Hofstetter, J. Sep. Sci. 29, 1458 (2006).
  24. R. Danczyk, B. Krieder, A. North, T. Webster, H. Hogenesch, and A. Rundell, Biotechnol. Bioeng. 84, 215 (2003).
  25. C. M. Niemeyer, Trends Biotechnol. 20, 395 (2002).
  26. C. Boozer, J. Ladd, S. Chen, Q. Yu, J. Homola, and S. Jiang, Anal. Chem. 76, 6967 (2004).
  27. C. Boozer, J. Ladd, S. Chen, and S. Jiang, Anal. Chem. 78, 1515 (2006).
  28. R. C. Bailey, G. A. Kwong, C. G. Radu, O. N. Witte, and J. R. Heath, J. Am. Chem. Soc. 129, 1959 (2007).
  29. R. Wacker, C. M. Niemeyer, Chembiochem. 5, 453 (2004).
  30. I. H. Cho, E. H. Paek, H. Lee, J. Y. Kang, T. S. Kim, and S. H. Paek, Anal. Biochem. 365, 14 (2007).
  31. E. J. Jeong, Y. S. Jeong, K. Park, S. Y. Yi, J. Ahn, S. J. Chung, M. Kim, and B. H. Chung, J. Biotechnol. 135, 16 (2008).
  32. L. E. Schaufler, and R. E. Klevit, J. Mol. Biol. 329, 931 (2003).
  33. D. Hao, M. Ohme-Takagi, and K. Yamasaki, FEBS Lett. 536, 151 (2003).
  34. M. Oda, K. Furukawa, A. Sarai, and H. Nakamura, FEBS Lett. 454, 288 (1999).
  35. E. Maillart, K. Brengel-Pesce, D. Capela, A. Roget, T. Livache, M. Canva, Y. Levy, and T. Soussi, Oncogene 23, 5543 (2004).
  36. S. A. Johnston, M. J. Zavortink, C. Debouck, and J. E. Hopper, Proc. Natl. Acad. Sci. USA 83, 6553 (1986).
  37. R. Brent, and M. Ptashne, Nature 312, 612 (1984).
  38. K. Park, J. M. Lee, Y. Jung, T. Habtemariam, A. Woubit, C. D. Fermin, and M. Kim, Analysis 136, 2506 (2011).
  39. E. K. O'Shea, J. D. Klemm, P. S. Kim and T. Alber, Science 254, 539 (1991).
  40. P. B. Harbury, T. Zhang, P. S. Kim, and T. Alber, Science 262, 1401 (1993).