DOI QR코드

DOI QR Code

Strategies in Protein Immobilization on a Gold Surface

  • Park, Jeho (BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Moonil (BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Received : 2015.01.28
  • Accepted : 2015.01.30
  • Published : 2015.01.30

Abstract

Protein immobilization on a gold surface plays an important role in the usefulness of biosensors that utilize gold-coated surfaces such as surface plasmon resonance (SPR), quartz crystal microbalance (QCM), etc. For developing high performance biosensors, it is necessarily required that immobilized proteins must remain biologically active. Loss of protein activity and maintenance of its stability on transducer surfaces is directly associated with the choice of immobilization methods, affecting protein-protein interactions. During the past decade, a variety of strategies have been extensively developed for the effective immobilization of proteins in terms of the orientation, density, and stability of immobilized proteins on analytical devices operating on different principles. In this review, recent advances and novel strategies in protein immobilization technologies developed for biosensors are briefly discussed, thereby providing an useful information for the selection of appropriate immobilization approach.

Acknowledgement

Supported by : National Research Foundation (NRF)

References

  1. C. Jianrong, M. Yuqing, H. Nongyue, W Xiaohua, L Sijiao, Biotechnol. Adv. 22, 505 (2004). https://doi.org/10.1016/j.biotechadv.2004.03.004
  2. S. O. Jung, H. S. Ro, B. H. Kho, Y. B. Shin, M. G. Kim, and B. H. Chung, Proteomics 5, 4427 (2005). https://doi.org/10.1002/pmic.200500001
  3. Y. Oh, Y. Lee, J. Heath, and M. Kim, IEEE Sensors J. 15, 637 (2015). https://doi.org/10.1109/JSEN.2014.2358261
  4. F. Rusmini, Z. Zhong, and J. Feijen, Biomacromolecules 8, 1775 (2007). https://doi.org/10.1021/bm061197b
  5. Y. Jung, J. Y. Jeong, and B. H. Chung, Analyst 133, 697 (2008). https://doi.org/10.1039/b800014j
  6. J. E. Butler, L. Ni, W. R. Brown, K. S. Joshi, J. Chang, B. Rosenberg, and E. W. J. Voss, Mol. Immunol. 30, 1165 (1993). https://doi.org/10.1016/0161-5890(93)90135-X
  7. H. B. Pyo, Y. B. Shin, M. G. Kim, and H. C. Yoon, Langmuir 21, 166 (2005). https://doi.org/10.1021/la0486382
  8. J. Homola, Anal. Bioanal. Chem. 377, 528 (2003). https://doi.org/10.1007/s00216-003-2101-0
  9. M. A. Cooper, Anal. Bioanal. Chem. 377, 834 (2003). https://doi.org/10.1007/s00216-003-2111-y
  10. J. Nilsson, S. Stahl, J. Lundeberg, M. Uhlen, and P. Nygren, Protein Express. Purif. 11, 1 (1997). https://doi.org/10.1006/prep.1997.0767
  11. J. M. Jung, Y. B. Shin, M. G. Kim, H. S. Ro, H. T. Jung, and B. H. Chung, Anal. Biochem. 330, 251 (2004). https://doi.org/10.1016/j.ab.2004.02.009
  12. T. H. Ha, S. O. Jung, J. M. Lee, K. Y. Lee, Y. Lee, J. S. Park, and B. H. Chung, Anal. Chem. 79, 546 (2007). https://doi.org/10.1021/ac061639+
  13. S. M. Patrie, and M. Mrksich, Anal. Chem. 79, 5878 (2007). https://doi.org/10.1021/ac0701738
  14. D. Gao, N. McBean, J. S. Schultz, Y. Yan, A. Mulchandani, and W. Chen, J. Am. Chem. Soc. 128, 676 (2006). https://doi.org/10.1021/ja056364e
  15. Y. Jung, J. M. Lee, H. Jung, and B. H. Chung, Anal. Chem. 79, 6534 (2007) https://doi.org/10.1021/ac070484i
  16. J. Park, H. H. Nguyen, A. Woubit, and M. Kim, Appl. Sci. Converg. Technol. 23, 61 (2014). https://doi.org/10.5757/ASCT.2014.23.2.61
  17. J. M. Kogot, H. J. England, G. F. Strouse, and T. M. Logan, J. Am. Chem. Soc. 130, 16156 (2008). https://doi.org/10.1021/ja8064717
  18. P. Peluso, D. S. Wilson, D. Do, H. Tran, M. Venkatasubbaiah, D. Quincy, B. Heidecker, K. Poindexter, N. Tolani, M. Phelan, K. Witte, L. S. Jung, P. Wagner, and S. Nock, Anal. Biochem. 312, 113 (2003). https://doi.org/10.1016/S0003-2697(02)00442-6
  19. M. Cretich, F. Damin, G. Pirri, and M. Chiari, Biomol. Eng. 23, 77 (2006). https://doi.org/10.1016/j.bioeng.2006.02.001
  20. I. Vikholm-Lundin, and W. M. Albers, Biosens. Bioelectron. 21, 1141 (2006). https://doi.org/10.1016/j.bios.2005.04.011
  21. B. Y. Kim, C. B. Swearingen, J. A. Ho, E. V. Romanova, P. W. Bohn and J. V. Sweedler, J. Am. Chem. Soc. 129, 7620 (2007). https://doi.org/10.1021/ja070041w
  22. J. M. Lee, H. K. Park, Y. Jung, J. K. Kim, S. O. Jung, and B. H. Chung, Anal. Chem. 79, 2680 (2007). https://doi.org/10.1021/ac0619231
  23. E. J. Franco, H. Hofstetter, and O. Hofstetter, J. Sep. Sci. 29, 1458 (2006). https://doi.org/10.1002/jssc.200600062
  24. R. Danczyk, B. Krieder, A. North, T. Webster, H. Hogenesch, and A. Rundell, Biotechnol. Bioeng. 84, 215 (2003). https://doi.org/10.1002/bit.10760
  25. C. M. Niemeyer, Trends Biotechnol. 20, 395 (2002). https://doi.org/10.1016/S0167-7799(02)02022-X
  26. C. Boozer, J. Ladd, S. Chen, Q. Yu, J. Homola, and S. Jiang, Anal. Chem. 76, 6967 (2004). https://doi.org/10.1021/ac048908l
  27. C. Boozer, J. Ladd, S. Chen, and S. Jiang, Anal. Chem. 78, 1515 (2006). https://doi.org/10.1021/ac051923l
  28. R. C. Bailey, G. A. Kwong, C. G. Radu, O. N. Witte, and J. R. Heath, J. Am. Chem. Soc. 129, 1959 (2007). https://doi.org/10.1021/ja065930i
  29. R. Wacker, C. M. Niemeyer, Chembiochem. 5, 453 (2004). https://doi.org/10.1002/cbic.200300788
  30. I. H. Cho, E. H. Paek, H. Lee, J. Y. Kang, T. S. Kim, and S. H. Paek, Anal. Biochem. 365, 14 (2007). https://doi.org/10.1016/j.ab.2007.02.028
  31. E. J. Jeong, Y. S. Jeong, K. Park, S. Y. Yi, J. Ahn, S. J. Chung, M. Kim, and B. H. Chung, J. Biotechnol. 135, 16 (2008). https://doi.org/10.1016/j.jbiotec.2008.02.019
  32. L. E. Schaufler, and R. E. Klevit, J. Mol. Biol. 329, 931 (2003). https://doi.org/10.1016/S0022-2836(03)00550-3
  33. D. Hao, M. Ohme-Takagi, and K. Yamasaki, FEBS Lett. 536, 151 (2003). https://doi.org/10.1016/S0014-5793(03)00045-0
  34. M. Oda, K. Furukawa, A. Sarai, and H. Nakamura, FEBS Lett. 454, 288 (1999). https://doi.org/10.1016/S0014-5793(99)00833-9
  35. E. Maillart, K. Brengel-Pesce, D. Capela, A. Roget, T. Livache, M. Canva, Y. Levy, and T. Soussi, Oncogene 23, 5543 (2004). https://doi.org/10.1038/sj.onc.1207639
  36. S. A. Johnston, M. J. Zavortink, C. Debouck, and J. E. Hopper, Proc. Natl. Acad. Sci. USA 83, 6553 (1986). https://doi.org/10.1073/pnas.83.17.6553
  37. R. Brent, and M. Ptashne, Nature 312, 612 (1984). https://doi.org/10.1038/312612a0
  38. K. Park, J. M. Lee, Y. Jung, T. Habtemariam, A. Woubit, C. D. Fermin, and M. Kim, Analysis 136, 2506 (2011).
  39. E. K. O'Shea, J. D. Klemm, P. S. Kim and T. Alber, Science 254, 539 (1991). https://doi.org/10.1126/science.1948029
  40. P. B. Harbury, T. Zhang, P. S. Kim, and T. Alber, Science 262, 1401 (1993). https://doi.org/10.1126/science.8248779