DOI QR코드

DOI QR Code

Properties of Defective Regions Observed by Photoluminescence Imaging for GaN-Based Light-Emitting Diode Epi-Wafers

  • Kim, Jongseok ;
  • Kim, HyungTae ;
  • Kim, Seungtaek ;
  • Jeong, Hoon ;
  • Cho, In-Sung ;
  • Noh, Min Soo ;
  • Jung, Hyundon ;
  • Jin, Kyung Chan
  • Received : 2015.09.09
  • Accepted : 2015.11.03
  • Published : 2015.12.25

Abstract

A photoluminescence (PL) imaging method using a vision camera was employed to inspect InGaN/GaN quantum-well light-emitting diode (LED) epi-wafers. The PL image revealed dark spot defective regions (DSDRs) as well as a spatial map of integrated PL intensity of the epi-wafer. The Shockley-Read-Hall (SRH) nonradiative recombination coefficient increased with the size of the DSDRs. The high nonradiative recombination rates of the DSDRs resulted in degradation of the optical properties of the LED chips fabricated at the defective regions. Abnormal current-voltage characteristics with large forward leakages were also observed for LED chips with DSDRs, which could be due to parallel resistances bypassing the junction and/or tunneling through defects in the active region. It was found that the SRH nonradiative recombination process was dominant in the voltage range where the forward leakage by tunneling was observed. The results indicated that the DSDRs observed by PL imaging of LED epi-wafers were high density SRH nonradiative recombination centers which could affect the optical and electrical properties of the LED chips, and PL imaging can be an inspection method for evaluation of the epi-wafers and estimation of properties of the LED chips before fabrication.

Keywords

Light-emitting diodes;Photoluminescence;Imaging;Optical inspection

References

  1. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308, 1274-1278 (2005). https://doi.org/10.1126/science.1108712
  2. G. Tamulaitis, J. Mickevičius, D. Dobrovolskas, E. Kuokštis, M. Shur, M. Shatalov, J. Yang, and R. Gaska, “Spatially-resolved photoluminescence study of high indium content InGaN LED structures,” Phys. Status Solidi C 7, 1869-1871 (2010). https://doi.org/10.1002/pssc.200983477
  3. Y.-S. Choi, J.-H. Park, S.-S. Kim, H.-J. Song, S.-H. Lee, J.-J. Jung, and B.-T. Lee, “Effects of dislocations on the luminescence of GaN/InGaN multi-quantum-well light-emitting-diode layers,” Mater. Lett. 58, 2614-2617 (2004). https://doi.org/10.1016/j.matlet.2004.03.021
  4. A. Kaneta, K. Okamoto, Y. Kawakami, S. Fujita, G. Marutsuki, Y. Narukawa, and T. Mukai, “Spatial and temporal luminescence dynamics in an InxGa1-xN single quantum well probed by near-field optical microscopy,” Appl. Phys. Lett. 81, 4353-4355 (2002). https://doi.org/10.1063/1.1526917
  5. G. Livescu, M. Angell, J. Filipe, and W. H. Knox, "A real-time photoluminescence imaging system," J. Electron. Mater. 19, 937-941 (1990). https://doi.org/10.1007/BF02652919
  6. H.-T. Kim, J. Kim, S. Kim, H.-K. Yuh, D.-H. Kim, D.-H. Ahn, and D.-S. Shin, “A dual side electroluminescence measurement system for LED wafer manufacturing,” Recent Patents on Signal Proc. 3, 49-55 (2013). https://doi.org/10.2174/2210686311303010007
  7. Y. H. Aliyu, D. V. Morgan, and H. Thomas, “A luminescence mapping technique for rapid evaluation of visible-lightemitting materials used in semiconductor light-emitting diodes,” Meas. Sci. Technol. 8, 437-440 (1997). https://doi.org/10.1088/0957-0233/8/4/011
  8. C. J. Raymond and Z. Li, “Photoluminescence metrology for LED characterization in high volume manufacturing,” Proc. SPIE 8681, 86810P (2013).
  9. S. Nakamura and M. R. Krames, “History of gallium-nitride based light-emitting diodes for illumination,” Proc. IEEE 101, 2211-2220 (2013). https://doi.org/10.1109/JPROC.2013.2274929
  10. M. Mandurrino, G. Verzellesi, M. Goano, M. Vallone, F. Bertazzi, G. Ghione, M. Meneghini, G. Meneghesso, and E. Zanoni, “Physics-based modeling and experimental implications of trap-assisted tunneling in InGaN/GaN light-emitting diodes,” Phys. Status Solidi A 212, 947-953 (2015). https://doi.org/10.1002/pssa.201431743
  11. X. A. Cao, J. M. Teetsov, M. P. D’Evelyn, D. W. Merfeld, and C. H. Yan, “Electrical characteristics of InGaN/GaN light-emitting diodes grown on GaN and sapphire substrates,” Appl. Phys. Lett. 85, 7-9 (2004). https://doi.org/10.1063/1.1767280
  12. H. Masui, “Diode ideality factor in modern light-emitting diodes,” Semicond. Sci. Technol. 26, 075011 (2011). https://doi.org/10.1088/0268-1242/26/7/075011
  13. E. F. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University Press, Cambridge, UK, 2006), Chapter 4.
  14. M. Meneghini, M. la Grassa, S. Vaccari, B. Galler, R. Zeisel, P. Drechsel, B. Hahn, G. Meneghesso, and E. Zanoni, “Characterization of the deep levels responsible for nonradiative recombination in InGaN/GaN light-emitting diodes,” Appl. Phys. Lett. 104, 113505 (2014). https://doi.org/10.1063/1.4868719
  15. Q. Dai, M. F. Schubert, M. H. Kim, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, “Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities,” Appl. Phys. Lett. 94, 111109 (2009). https://doi.org/10.1063/1.3100773
  16. J. P. Bergman, H. Jakobsson, L. Storasta, F. H. C. Carlsson, B. Magnusson, S. Sridhara, G. Pozina, H. Lendenmann, and E. Janzén, “Characterization and defects in silicon carbide,” Mater. Sci. Forum 389-393, 9-14 (2002). https://doi.org/10.4028/www.scientific.net/MSF.389-393.9
  17. T. Trupke, R. A. Bardos, M. C. Schubert, and W. Warta, “Photoluminescence imaging of silicon wafers,” Appl. Phys. Lett. 89, 044107 (2006). https://doi.org/10.1063/1.2234747
  18. I. Mártil, E. Redondo, and A. Ojeda, “Influence of defects on the electrical and optical characteristics of blue light-emitting diodes based on III-V nitrides,” J. Appl. Phys. 81, 2442-2444 (1997). https://doi.org/10.1063/1.364294
  19. I.-G. Choi, D.-P. Han, J. Yun, K. S. Kim, D.-S. Shin, and J.-I. Shim, “Investigation of dominant nonradiative mechanisms as a function of current in InGaN/GaN light-emitting diodes,” Appl. Phys. Express 6, 052105 (2013). https://doi.org/10.7567/APEX.6.052105
  20. H. Masui, T. Ive, M. C. Schmidt, N. N. Fellows, H. Sato, H. Asamizu, S. Nakamura, and S. P. Denbaars, “Equivalent-circuit analysis for the electroluminescence-efficiency problem of InGaN/GaN light-emitting diodes,” Jpn. J. Appl. Phys. 47, 2112-2118 (2008). https://doi.org/10.1143/JJAP.47.2112
  21. M. Binder, B. Galler, M. Furitsch, J. Off, J. Wagner, R. Zeisel, and S. Katz, “Investigations on correlation between I-V characteristics and internal quantum efficiency of blue (AlGaIn)N light-emitting diodes,” Appl. Phys. Lett. 103, 221110 (2013). https://doi.org/10.1063/1.4833895
  22. D. Yan, H. Lu, D. Chen, R. Zhang, and Y. Zheng, “Forward tunneling current in GaN-based blue light-emitting diodes,” Appl. Phys. Lett. 96, 083504 (2010). https://doi.org/10.1063/1.3327332
  23. K. Sakowski, L. Marcinkowski, S. Krukowski, S. Grzanka, and E. Litwin-Staszewska, “Simulation of trap-assisted tunneling effect on characteristics of gallium nitride diodes,” J. Appl. Phys. 111, 123115 (2012). https://doi.org/10.1063/1.4730772
  24. M. Auf der Maur, B. Galler, I. Pietzonka, M. Strassburg, H. Lugauer, and A. Di Carlo, “Trap-assisted tunneling in InGaN/GaN single-quantum-well light-emitting diodes,” Appl. Phys. Lett. 105, 133504 (2014). https://doi.org/10.1063/1.4896970
  25. K.-S. Kim, D.-P. Han, H.-S. Kim, and J.-I. Shim, “Analysis of dominant carrier recombination mechanisms depending on injection current in InGaN green light emitting diodes,” Appl. Phys. Lett. 104, 091110 (2014).
  26. M. Meneghini, L.-R. Trevisanello, G. Meneghesso, and E. Zanoni, “A review on the reliability of GaN-based LEDs,” IEEE Trans. Device Mater. Reliab. 8, 323-331 (2008). https://doi.org/10.1109/TDMR.2008.921527
  27. X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer, and D. Walker, “Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes,” IEEE Electron Device Lett. 23, 535-537 (2002). https://doi.org/10.1109/LED.2002.802601