Identification and Functional Analysis of Differentially Expressed Genes Related to Metastatic Osteosarcoma

  • Niu, Feng (Department of Spine Surgery, the First Hospital of Jilin University) ;
  • Zhao, Song (Department of Spine Surgery, the First Hospital of Jilin University) ;
  • Xu, Chang-Yan (Medical Record Department, the First Hospital of Jilin University) ;
  • Chen, Lin (Department of Spine Surgery, the First Hospital of Jilin University) ;
  • Ye, Long (Department of Spine Surgery, the First Hospital of Jilin University) ;
  • Bi, Gui-Bin (Department of Spine Surgery, the First Hospital of Jilin University) ;
  • Tian, Gang (Department of Spine Surgery, the First Hospital of Jilin University) ;
  • Gong, Ping (Department of Spine Surgery, the First Hospital of Jilin University) ;
  • Nie, Tian-Hong (Department of Spine Surgery, the First Hospital of Jilin University)
  • Published : 2015.01.22


Background: To explore the molecular mechanisms of metastatic osteosarcoma (OS) by using the microarray expression profiles of metastatic and non-metastatic OS samples. Materials and Methods: The gene expression profile GSE37552 was downloaded from Gene Expression Omnibus database, including 2 human metastatic OS cell line models and 2 two non-metastatic OS cell line models. The differentially expressed genes (DEGs) were identified by Multtest package in R language. In addition, functional enrichment analysis of the DEGs was performed by WebGestalt, and the protein-protein interaction (PPI) networks were constructed by Hitpredict, then the signal pathways of the genes involved in the networks were performed by Kyoto Encyclopaedia of Genes and Genomes (KEGG) automatic annotation server (KAAS). Results: A total of 237 genes were classified as DEGs in metastatic OS. The most significant up- and down-regulated genes were A2M (alpha-2-macroglobulin) and BCAN (brevican). The DEGs were significantly related to the response to hormone stimulus, and the PPI network of A2M contained IL1B (interleukin), LRP1 (low-density lipoprotein receptor-related protein 1) and PDGF (platelet-derived growth factor). Furthermore, the MAPK signaling pathway and focal adhesion were significantly enriched. Conclusions: A2M and its interactive proteins, such as IL1B, LRP1 and PDGF may be candidate target molecules to monitor, diagnose and treat metastatic OS. The response to hormone stimulus, MAPK signaling pathway and focal adhesion may play important roles in metastatic OS.


  1. Bielack SS, Kempf-Bielack B, Delling G, et al (2002). Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol, 20, 776-90.
  2. Blennow K, Ricksten A, Prince J, et al (2000). No association between the ${\alpha}2$-macroglobulin (A2M) deletion and Alzheimer's disease, and no change in A2M mRNA, protein, or protein expression. J Neural Transm, 107, 1065-79.
  3. Boucher P, Gotthardt M (2004). LRP and PDGF signaling: a pathway to atherosclerosis. Trends Cardiovasc Med, 14, 55-60.
  4. Broadhead ML, Clark J, Myers DE, et al (2011). The molecular pathogenesis of osteosarcoma: a review. Sarcoma, 2011,
  5. Carracedo A, Ma L, Teruya-Feldstein J, et al (2008). Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest, 118, 3065.
  6. Charity R, Foukas A, Deshmukh N, Grimer R (2006). Vascular endothelial growth factor expression in osteosarcoma. Clin Orthop Relat Res, 448, 193-8.
  7. Diao C-Y, Guo HB, Ouyang YR, et al (2013). Screening for metastatic osteosarcoma biomarkers with a DNA microarray. Asian Pac J Cancer Prev, 15, 1817-22.
  8. Duncan D, Prodduturi N, Zhang B (2010). WebGestalt2: an updated and expanded version of the Web-based Gene Set Analysis Toolkit. BMC Bioinformatics, 11, 10.
  9. Flores RJ, Li Y, Yu A, et al (2012). A systems biology approach reveals common metastatic pathways in osteosarcoma. BMC Syst Biol, 6, 50.
  10. Fuchs B, Pritchard DJ (2002). Etiology of osteosarcoma. Clin Orthop Relat Res, 397, 40-52.
  11. Fujita A, Sato J, Rodrigues L, et al (2006). Evaluating different methods of microarray data normalization. BMC Bioinformatics, 7, 469.
  12. Fujita T, Nagayama A, Anazawa S (2003). Circulating alpha-2-macroglobulin levels and depression scores in patients who underwent abdominal cancer surgery. J Surg Res, 114, 90-4.
  13. He Y, Liang X, Meng C, et al (2014). Genetic polymorphisms of interleukin-1 beta and osteosarcoma risk. Int Orthop, 1-6.
  14. Herz J, Strickland D K (2001). LRP: a multifunctional scavenger and signaling receptor. J Clin Invest, 108, 779-84.
  15. Hu J, Feng D, Cheng R (2001). Expressions of p-MAPK, cyclin D1, p53 protein and their relationship in osteosarcoma. Hunan Yi Ke Da Xue Xue Bao, 26, 325.
  16. Hulka BS, Moorman PG (2008). Reprint of breast cancer: hormones and other risk factors. Maturitas, 61, 203-13.
  17. Jia J, Tian Q, Liu Y, et al (2013). Interactive effect of bisphenol A (BPA) exposure with-22G/C polymorphism in LOX gene on the risk of osteosarcoma. Asian Pac J Cancer Prev, 14, 3805-8.
  18. Jiang W G, Ye L, Ji K, et al (2013). Antitumour effects of Yangzheng Xiaoji in human osteosarcoma: The pivotal role of focal adhesion kinase signalling. Oncol Rep, 30, 1405-13.
  19. Kansara M, Thomas DM (2007). Molecular pathogenesis of osteosarcoma. DNA Cell Biol, 26, 1-18.
  20. Kaste SC, Pratt CB, Cain AM, et al (1999). Metastases detected at the time of diagnosis of primary pediatric extremity osteosarcoma at diagnosis. Cancer, 86, 1602-8.<1602::AID-CNCR31>3.0.CO;2-R
  21. Kubista B, Klinglmueller F, Bilban M, et al (2011). Microarray analysis identifies distinct gene expression profiles associated with histological subtype in human osteosarcoma. Int Orthop, 35, 401-11.
  22. Kubo T, Piperdi S, Rosenblum J, et al (2008). Platelet-derived growth factor receptor as a prognostic marker and a therapeutic target for imatinib mesylate therapy in osteosarcoma. Cancer, 112, 2119-29.
  23. Kulmambetova GN, Imanbekova MK, Logvinenko AA, et al (2014). Association of cytokine gene polymorphisms with gastritis in a kazakh population. Asian Pac J Cancer Prev, 15, 7763.
  24. Langlois B, Perrot G, Schneider C, et al (2010). LRP-1 promotes cancer cell invasion by supporting ERK and inhibiting JNK signaling pathways. PLoS One, 5, 11584.
  25. Lee S-G, Kim B, Choi W, et al (2003). Lack of association between pro-inflammatory genotypes of the interleukin-1 (IL-1B-31 C/+ and IL-1RN* 2/* 2) and gastric cancer/duodenal ulcer in Korean population. Cytokine, 21, 167-71.
  26. Li CJ, Cong Y, Liu XZ, et al (2014). Research progress on the livin gene and osteosarcomas. Asian Pac J Cancer Prev, 15, 8577-9.
  27. Lin DS, Cai LY, Ding J, Gao WY (2014). Correlation between E-cadherin-regulated cell adhesion and human osteosarcoma MG-63 cell anoikis. Asian Pac J Cancer Prev, 15, 8203-7.
  28. Linja MJ, Savinainen KJ, Saramaki O R, et al (2001). Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res, 61, 3550-5.
  29. Link MP, Goorin AM, Miser AW, et al (1986). The effect of adjuvant chemotherapy on relapse-free survival in patients with osteosarcoma of the extremity. N Engl J Med, 314, 1600.
  30. Luo Y, Deng Z, Chen J (2013). Pivotal regulatory network and genes in osteosarcoma. Arch Med Sci, 9, 569-75.
  31. MacMahon B, Cole P, Brown J (1973). Etiology of human breast cancer: a review. J Natl Cancer Inst, 50, 21-42.
  32. Mialou V, Philip T, Kalifa C, et al (2005). Metastatic osteosarcoma at diagnosis. Cancer, 104, 1100-9.
  33. Patil A, Nakai K, Nakamura H (2011). HitPredict: a database of quality assessed protein-protein interactions in nine species. Nucleic Acids Res, 39, 744-9.
  34. Patil A, Nakamura H (2005). Filtering high-throughput protein-protein interaction data using a combination of genomic features. BMC Bioinformatics, 6, 100.
  35. Pezzi CM, Pollock RE, Evans HL, et al (1990). Preoperative chemotherapy for soft-tissue sarcomas of the extremities. Ann Surge, 211, 476.
  36. Pignochino Y, Dell'Aglio C, Basirico M, et al (2013). The combination of sorafenib and everolimus abrogates mTORC1 and mTORC2 upregulation in osteosarcoma preclinical models. Clin Cancer Res, 19, 2117-31.
  37. Rehman A A, Ahsan H, Khan F H (2013). alpha-2-Macroglobulin: a physiological guardian. J Cell Physiol, 228, 1665-75.
  38. Smida J, Baumhoer D, Rosemann M, et al (2010). Genomic alterations and allelic imbalances are strong prognostic predictors in osteosarcoma. Clin Cancer Res, 16, 4256-67.
  39. Smyth G K (2005). Limma: linear models for microarray data. Bioinformatics and computational biology solutions using R and Bioconductor. Springer.
  40. Ta HT, Dass CR, Choong PF, Dunstan DE (2009). Osteosarcoma treatment: state of the art. Cancer Metastasis Rev, 28, 247-63.
  41. Takagi S, Takemoto A, Takami M, et al (2014). Platelets promote osteosarcoma cell growth through activation of the platelet-derived growth factor receptor-Akt signaling axis. Cancer Sci, 105, 983-8.
  42. Tingting R, Wei G, Changliang P, et al (2010). Arsenic trioxide inhibits osteosarcoma cell invasiveness via MAPK signaling pathway. Cancer Biology Therapy, 10, 251-7.
  43. Trougakos IP, Chondrogianni N, Amarantos I, et al (2010). Genome-wide transcriptome profile of the human osteosarcoma Sa OS and U-2 OS cell lines. Cancer Genet Cytogenet, 196, 109-18.
  44. Troyanskaya O, Cantor M, Sherlock G, et al (2001). Missing value estimation methods for DNA microarrays. Bioinformatics, 17, 520-5.
  45. Wang J, Zu J, Xu G, et al (2014). Inhibition of focal adhesion kinase induces apoptosis in human osteosarcoma SAOS-2 cells. Tumor Biol, 35, 1551-6.
  46. Yang R, Piperdi S, Gorlick R (2008). Activation of the RAF/mitogen-activated protein/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase pathway mediates apoptosis induced by chelerythrine in osteosarcoma. Clin Cancer Res, 14, 6396-404.
  47. Ye J, Fang L, Zheng H, et al (2006). WEGO: a web tool for plotting GO annotations. Nucleic Acids Res, 34, 293-7.
  48. Zhang B, Kirov S, Snoddy J (2005). WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res, 33, 741-8.

Cited by

  1. Pericytes in sarcomas of bone vol.32, pp.7, 2015,