Casein Kinases I and 2α Phosphorylate Oryza Sativa Pseudo-Response Regulator 37 (OsPRR37) in Photoperiodic Flowering in Rice

  • Kwon, Choon-Tak (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Koo, Bon-Hyuk (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Dami (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Yoo, Soo-Cheul (Department of Bioresource and Rural System of Engineering, Hankyong National University) ;
  • Paek, Nam-Chon (Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University)
  • Received : 2014.09.17
  • Accepted : 2014.10.17
  • Published : 2015.01.31


Flowering time (or heading date) is controlled by intrinsic genetic programs in response to environmental cues, such as photoperiod and temperature. Rice, a facultative short-day (SD) plant, flowers early in SD and late in long-day (LD) conditions. Casein kinases (CKs) generally act as positive regulators in many signaling pathways in plants. In rice, Heading date 6 (Hd6) and Hd16 encode $CK2{\alpha}$ and CKI, respectively, and mainly function to delay flowering time. Additionally, the major LD-dependent floral repressors Hd2/Oryza sativa Pseudo-Response Regulator 37 (OsPRR37;hereafter PRR37) and Ghd7 also confer strong photoperiod sensitivity. In floral induction, Hd16 acts upstream of Ghd7 and CKI interacts with and phosphorylates Ghd7. In addition, Hd6 and Hd16 also act upstream of Hd2. However, whether CKI and $CK2{\alpha}$ directly regulate the function of PRR37 remains unclear. Here, we use in vitro pull-down and in vivo bimolecular fluorescence complementation assays to show that CKI and $CK2{\alpha}$ interact with PRR37. We further use in vitro kinase assays to show that CKI and $CK2{\alpha}$ phosphorylate different regions of PRR37. Our results indicate that direct posttranslational modification of PRR37 mediates the genetic interactions between these two protein kinases and PRR37. The significance of CK-mediated phosphorylation for PRR37 and Ghd7 function is discussed.


casein kinase I;casein kinase $2{\alpha}$;flowering time;OsPRR37;phosphorylation;rice


Supported by : National Research Foundation of Korea (NRF)


  1. Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K., and Araki, T. (2005). FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309, 1052-1056.
  2. Alabadi, D., Oyama, T., Yanovsky, M.J., Harmon, F.G., Mas, P., and Kay, S.A. (2001). Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293, 880-883.
  3. Beales, J., Turner, A., Griffiths, S., Snape, J.W., and Laurie, D.A. (2007). A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor. Appl. Genet. 115, 721-733.
  4. Citovsky, V., Lee, L.Y., Vyas, S., Glick, E., Chen, M.H., Vainstein, A., Gafni, Y., Gelvin, S.B., and Tzfira, T. (2006). Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta. J. Mol. Biol. 362, 1120-1131.
  5. Corbesier, L., Vincent, C., Jang, S.H., Fornara, F., Fan, Q.Z., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull, C., et al. (2007). FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316, 1030-1033.
  6. Dai, C., and Xue, H.W. (2010). Rice early flowering1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signalling. EMBO J. 29, 1916-1927.
  7. Daniel, X., Sugano, S., and Tobin, E.M. (2004). CK2 phosphorylation of CCA1 is necessary for its circadian oscillator function in Arabidopsis. Proc. Natl. Acad. Sci. USA 101, 3292-3297.
  8. Doi, K., Izawa, T., Fuse, T., Yamanouchi, U., Kubo, T., Shimatani, Z., Yano, M., and Yoshimura, A. (2004). Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-Iike gene expression independently of Hd1. Gene Dev. 18, 926-936.
  9. Farre, E.M., and Kay, S.A. (2007). PRR7 protein levels are regulated by light and the circadian clock in Arabidopsis. Plant J. 52, 548-560.
  10. Fujino, K., and Sekiguchi, H. (2005). Mapping of QTLs conferring extremely early heading in rice (Oryza sativa L.). Theor. Appl. Genet. 111, 393-398.
  11. Fujino, K., Yamanouchi, U., and Yano, M. (2013). Roles of the Hd5 gene controlling heading date for adaptation to the northern limits of rice cultivation. Theor. Appl. Genet. 126, 611-618.
  12. Fujiwara, S., Wang, L., Han, L.Q., Suh, S.S., Salome, P.A., McClung, C.R., and Somers, D.E. (2008). Post-translational regulation of the Arabidopsis circadian clock through selective proteolysis and phosphorylation of pseudo-response regulator proteins. J. Biol. Chem. 283, 23073-23083.
  13. Gao, H., Zheng, X.M., Fei, G.L., Chen, J., Jin, M.N., Ren, Y.L., Wu, W.X., Zhou, K.N., Sheng, P.K., Zhou, F., et al. (2013). Ehd4 Encodes a Novel and Oryza-Genus-Specific Regulator of Photoperiodic Flowering in Rice. PLoS Genet. 9, e1003281
  14. Hayama, R., Yokoi, S., Tamaki, S., Yano, M., and Shimamoto, K. (2003). Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422, 719-722.
  15. Herrero, E., Kolmos, E., Bujdoso, N., Yuan, Y., Wang, M.M., Berns, M.C., Uhlworm, H., Coupland, G., Saini, R., Jaskolski, M., et al. (2012). EARLY FLOWERING4 recruitment of EARLY FLOWERING3 in the nucleus sustains the Arabidopsis circadian clock. Plant Cell 24, 428-443.
  16. Hori, K., Ogiso-Tanaka, E., Matsubara, K., Yamanouchi, U., Ebana, K., and Yano, M. (2013). Hd16, a gene for casein kinase I, is involved in the control of rice flowering time by modulating the day-length response. Plant J. 76, 36-46.
  17. Huq, E., Tepperman, J.M., and Quail, P.H. (2000). GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA 97, 9789-9794.
  18. Ito, S., Kawamura, H., Niwa, Y., Nakamichi, N., Yamashino, T., and Mizuno, T. (2009). A genetic study of the Arabidopsis circadian clock with reference to the TIMING OF CAB EXPRESSION 1 (TOC1) Gene. Plant Cell Physiol. 50, 290-303.
  19. Izawa, T. (2007). Adaptation of flowering-time by natural and artificial selection in Arabidopsis and rice. J. Exp. Bot. 58, 3091-3097.
  20. Kaczorowski, K.A., and Quail, P.H. (2003). Arabidopsis PSEUDORESPONSE REGULATOR7 is a signaling intermediate in phytochrome-regulated seedling deetiolation and phasing of the circadian clock. Plant Cell 15, 2654-2665.
  21. Kang, C.H., Moon, B.C., Park, H.C., Koo, S.C., Chi, Y.H., Cheong, Y.H., Yoon, B.D., Lee, S.Y., and Kim, C.Y. (2013). Rice small C2-domain proteins are phosphorylated by calcium-dependent protein kinase. Mol. Cells 35, 381-387.
  22. Kardailsky, I., Shukla, V.K., Ahn, J.H., Dagenais, N., Christensen, S.K., Nguyen, J.T., Chory, J., Harrison, M.J., and Weigel, D. (1999). Activation tagging of the floral inducer FT. Science 286, 1962-1965.
  23. Kim, S.L., Choi, M., Jung, K.H., and An, G. (2013). Analysis of the early-flowering mechanisms and generation of T-DNA tagging lines in Kitaake, a model rice cultivar. J. Exp. Bot. 64, 4169-4182.
  24. Knippschild, U., Gocht, A., Wolff, S., Huber, N., Lohler, J., and Stoter, M. (2005). The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. Cell. Signal. 17, 675-689.
  25. Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M., and Araki, T. (1999). A pair of related genes with antagonistic roles in mediating flowering signals. Science 286, 1960-1962.
  26. Komiya, R., Ikegami, A., Tamaki, S., Yokoi, S., and Shimamoto, K. (2008). Hd3a and RFT1 are essential for flowering in rice. Development 135, 767-774.
  27. Komiya, R., Yokoi, S., and Shimamoto, K. (2009). A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136, 3443-3450.
  28. Koo, B.H., Yoo, S.C., Park, J.W., Kwon, C.T., Lee, B.D., An, G., Zhang, Z.Y., Li, J.J., Li, Z.C., and Paek, N.C. (2013). Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation at a wide range of latitudes. Mol. Plant 6, 1877-1888.
  29. Kwon, C.T., Yoo, S.C., Koo, B.H., Cho, S.H., Park, J.W., Zhang, Z.Y., Li, J.J., Li, Z.C., and Paek, N.C. (2014). Natural variation in early flowering1 contributes to early flowering in japonica rice under long days. Plant Cell Environ. 37, 101-112.
  30. Lin, H.X., Yamamoto, T., Sasaki, T., and Yano, M. (2000). Characterization and detection of epistatic interactions of 3 QTLs, Hd1, Hd2, and Hd3,controlling heading date in rice using nearly isogenic lines. Theor. Appl. Genet. 101, 1021-1028.
  31. Lu, S.X., Liu, H., Knowles, S.M., Li, J., Ma, L., Tobin, E.M., and Lin, C. (2011). A role for protein kinase casein kinase2 alphasubunits in the Arabidopsis circadian clock. Plant Physiol. 157, 1537-1545.
  32. Matsubara, K., Kono, I., Hori, K., Nonoue, Y., Ono, N., Shomura, A., Mizubayashi, T., Yamamoto, S., Yamanouchi, U., Shirasawa, K., et al. (2008a). Novel QTLs for photoperiodic flowering revealed by using reciprocal backcross inbred lines from crosses between japonica rice cultivars. Theor. Appl. Genet. 117, 935-945.
  33. Matsubara, K., Yamanouchi, U., Wang, Z.X., Minobe, Y., Izawa, T., and Yano, M. (2008b). Ehd2, a rice ortholog of the maize INDETERMINATE1 gene, promotes flowering by up-regulating Ehd1. Plant Physiol. 148, 1425-1435.
  34. Matsubara, K., Yamanouchi, U., Nonoue, Y., Sugimoto, K., Wang, Z.X., Minobe, Y., and Yano, M. (2011). Ehd3, encoding a plant homeodomain finger-containing protein, is a critical promoter of rice flowering. Plant J. 66, 603-612.
  35. Matsubara, K., Ogiso-Tanaka, E., Hori, K., Ebana, K., Ando, T., and Yano, M. (2012). Natural variation in Hd17, a homolog of Arabidopsis ELF3 that is involved in rice photoperiodic flowering. Plant Cell Physiol. 53, 709-716.
  36. Matsushika, A., Makino, S., Kojima, M., and Mizuno, T. (2000). Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: Insight into the plant circadian clock. Plant Cell Physiol. 41, 1002-1012.
  37. Mulekar, J.J., and Huq, E. (2014). Expanding roles of protein kinase CK2 in regulating plant growth and development. J. Exp. Bot. 65, 2883-2893
  38. Murakami, M., Matsushika, A., Ashikari, M., Yamashino, T., and Mizuno, T. (2005). Circadian-associated rice pseudo response regulators (OsPRRs): Insight into the control of flowering time. Biosci. Biotech. Biochem. 69, 410-414.
  39. Murakami, M., Tago, Y., Yamashino, T., and Mizuno, T. (2007). Characterization of the rice circadian clock-associated pseudoresponse regulators in Arabidopsis thaliana. Biosci. Biotech. Biochem. 71, 1107-1110.
  40. Murphy, R.L., Klein, R.R., Morishige, D.T., Brady, J.A., Rooney, W.L., Miller, F.R., Dugas, D.V., Klein, P.E., and Mullet, J.E. (2011). Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum. Proc. Natl. Acad. Sci. USA 108, 16469-16474.
  41. Nakamichi, N., Kita, M., Ito, S., Yamashino, T., and Mizuno, T. (2005). PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana. Plant Cell Physiol. 46, 686-698.
  42. Nakamichi, N., Kita, M., Niinuma, K., Ito, S., Yamashino, T., Mizoguchi, T., and Mizuno, T. (2007). Arabidopsis clockassociated pseudo-response regulators PRR9, PRR7 and PRR5 coordinately and positively regulate flowering time through the canonical CONSTANS-dependent photoperiodic pathway. Plant Cell Physiol. 48, 822-832.
  43. Nonoue, Y., Fujino, K., Hirayama, Y., Yamanouchi, U., Lin, S.Y., and Yano, M. (2008). Detection of quantitative trait loci controlling extremely early heading in rice. Theor. Appl. Genet. 116, 715-722.
  44. Nusinow, D.A., Helfer, A., Hamilton, E.E., King, J.J., Imaizumi, T., Schultz, T.F., Farre, E.M., and Kay, S.A. (2011). The ELF4- ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475, 398-U161.
  45. Ogiso, E., Takahashi, Y., Sasaki, T., Yano, M., and Izawa, T. (2010). The role of Casein Kinase II in Flowering Time Regulation Has Diversified during Evolution. Plant Physiol. 152, 808-820.
  46. Park, D.H., Somers, D.E., Kim, Y.S., Choy, Y.H., Lim, H.K., Soh, M.S., Kim, H.J., Kay, S.A., and Nam, H.G. (1999). Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 285, 1579-1582.
  47. Park, S.J., Kim, S.L., Lee, S., Je, B.I., Piao, H.L., Park, S.H., Kim, C.M., Ryu, C.H., Park, S.H., Xuan, Y.H., et al. (2008). Rice indeterminate 1 (OsId1) is necessary for the expression of Ehd1 (Early heading date 1) regardless of photoperiod. Plant J. 56, 1018-1029.
  48. Portoles, S., and Mas, P. (2010). The functional interplay between protein kinase CK2 and CCA1 transcriptional activity is essential for clock temperature compensation in Arabidopsis. PLoS Genet. 6, e1001201
  49. Saito, H., Ogiso-Tanaka, E., Okumoto, Y., Yoshitake, Y., Izumi, H., Yokoo, T., Matsubara, K., Hori, K., Yano, M., Inoue, H., et al. (2012). Ef7 encodes an ELF3-like protein and promotes rice flowering by negatively regulating the floral repressor gene Ghd7 under both short- and long-day conditions. Plant Cell Physiol. 53, 717-728.
  50. Salome, P.A., and McClung, C.R. (2005). PSEUDO-RESPONSE REGULATOR 7 and 9 are partially redundant genes essential for the temperature responsiveness of the Arabidopsis circadian clock. Plant Cell 17, 791-803.
  51. Sawa, M., Nusinow, D.A., Kay, S.A., and Imaizumi, T. (2007). FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318, 261-265.
  52. Shibaya, T., Nonoue, Y., Ono, N., Yamanouchi, U., Hori, K., and Yano, M. (2011). Genetic interactions involved in the inhibition of heading by heading date QTL, Hd2 in rice under long-day conditions. Theor. Appl. Genet. 123, 1133-1143.
  53. Song, Y.H., Smith, R.W., To, B.J., Millar, A.J., and Imaizumi, T. (2012). FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering. Science 336, 1045-1049.
  54. Sugano, S., Andronis, C., Green, R.M., Wang, Z.Y., and Tobin, E.M. (1998). Protein kinase CK2 interacts with and phosphorylates the Arabidopsis circadian clock-associated 1 protein. Proc. Natl. Acad. Sci. USA 95, 11020-11025.
  55. Takahashi, Y., Shomura, A., Sasaki, T., and Yano, M. (2001). Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proc. Natl. Acad. Sci. USA 98, 7922-7927.
  56. Tan, S.T., Dai, C., Liu, H.T., and Xue, H.W. (2013). Arabidopsis casein kinase1 proteins CK1.3 and CK1.4 phosphorylate cryptochrome2 to regulate blue light signaling. Plant Cell 25, 2618-2632.
  57. Taoka, K., Ohki, I., Tsuji, H., Furuita, K., Hayashi, K., Yanase, T., Yamaguchi, M., Nakashima, C., Purwestri, Y.A., Tamaki, S., et al. (2011). 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 476, 332-U397.
  58. Tsuji, H., Tamaki, S., Komiya, R., and Shimamoto, K. (2008). Florigen and the photoperiodic control of flowering in rice. Rice 1, 25-35.
  59. Turner, A., Beales, J., Faure, S., Dunford, R.P., and Laurie, D.A. (2005). The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310, 1031-1034.
  60. Wang, L., Fujiwara, S., and Somers, D.E. (2010). PRR5 regulates phosphorylation, nuclear import and subnuclear localization of TOC1 in the Arabidopsis circadian clock. EMBO J. 29, 1903-1915.
  61. Wei, X.J., Jiang, L., Xu, J.F., Zhang, W.W., Lu, G.W., Zhang, Y.S., and Wan, J.M. (2008). Genetic analyses of heading date of Japonica rice cultivars from Northeast China. Field. Crop. Res. 107, 147-154.
  62. Wei, X.J., Xu, J.F., Guo, H.N., Jiang, L., Chen, S.H., Yu, C.Y., Zhou, Z.L., Hu, P.S., Zhai, H.Q., and Wan, J.M. (2010). DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol. 153, 1747-1758.
  63. Wu, C.Y., You, C.J., Li, C.S., Long, T., Chen, G.X., Byrne, M.E., and Zhang, Q.F. (2008). RID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice. Proc. Natl. Acad. Sci. USA 105, 12915-12920.
  64. Wu, W.X., Zheng, X.M., Lu, G.W., Zhong, Z.Z., Gao, H., Chen, L.P., Wu, C.Y., Wang, H.J., Wang, Q., Zhou, K.N., et al. (2013). Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia. Proc. Natl. Acad. Sci. USA 110, 2775-2780.
  65. Xue, W.Y., Xing, Y.Z., Weng, X.Y., Zhao, Y., Tang, W.J., Wang, L., Zhou, H.J., Yu, S.B., Xu, C.G., Li, X.H., et al. (2008). Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat. Genet. 40, 761-767.
  66. Yamamoto, T., Lin, H., Sasaki, T., and Yano, M. (2000). Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics 154, 885-891.
  67. Yamamoto, Y., Sato, E., Shimizu, T., Nakamich, N., Sato, S., Kato, T., Tabata, S., Nagatani, A., Yamashino, T., and Mizuno, T. (2003). Comparative genetic studies on the APRR5 and APRR7 genes belonging to the APRR1/TOC1 quintet implicated in circadian rhythm, control of flowering time, and early photomorphogenesis. Plant Cell Physiol. 44, 1119-1130.
  68. Yan, W.H., Wang, P., Chen, H.X., Zhou, H.J., Li, Q.P., Wang, C.R., Ding, Z.H., Zhang, Y.S., Yu, S.B., Xing, Y.Z., et al. (2011). A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol. Plant 4, 319-330.
  69. Yan, W.H., Liu, H.Y., Zhou, X.C., Li, Q.P., Zhang, J., Lu, L., Liu, T.M., Liu, H.J., Zhang, C.J., Zhang, Z.Y., et al. (2013). Natural variation in Ghd7.1 plays an important role in grain yield and adaptation in rice. Cell Res. 23, 969-971.
  70. Yang, Y., Peng, Q., Chen, G.X., Li, X.H., and Wu, C.Y. (2013). OsELF3 is involved in circadian clock regulation for promoting flowering under long-day conditions in rice. Mol. Plant 6, 202-215.
  71. Yano, M., Katayose, Y., Ashikari, M., Yamanouchi, U., Monna, L., Fuse, T., Baba, T., Yamamoto, K., Umehara, Y., Nagamura, Y., et al. (2000). Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the arabidopsis flowering time gene CONSTANS. Plant Cell 12, 2473-2483.
  72. Youn, J.H., Kim, T.W., Kim, E.J., Bu, S., Kim, S.K., Wang, Z.Y., and Kim, T.W. (2013). Structural and functional characterization of Arabidopsis GSK3-like kinase AtSK12. Mol. Cells 36, 564-570.
  73. Yu, J.W., Rubio, V., Lee, N.Y., Bai, S.L., Lee, S.Y., Kim, S.S., Liu, L.J., Zhang, Y.Y., Irigoyen, M.L., Sullivan, J.A., et al. (2008). COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability. Mol. Cell 32, 617-630.
  74. Zhao, J.M., Huang, X., Ouyang, X.H., Chen, W.L., Du, A.P., Zhu, L., Wang, S.G., Deng, X.W., and Li, S.G. (2012). OsELF3-1, an ortholog of Arabidopsis EARLY FLOWERING 3, regulates rice circadian rhythm and photoperiodic flowering. PLoS One 7, e43705.

Cited by

  1. Genes Contributing to Domestication of Rice Seed Traits and Its Global Expansion vol.9, pp.10, 2018,