TLR4 Mediates Pneumolysin-Induced ATF3 Expression through the JNK/p38 Pathway in Streptococcus pneumoniae-Infected RAW 264.7 Cells

  • Nguyen, Cuong Thach (School of Pharmacy, Sungkyunkwan University) ;
  • Kim, Eun-Hye (School of Pharmacy, Sungkyunkwan University) ;
  • Luong, Truc Thanh (School of Pharmacy, Sungkyunkwan University) ;
  • Pyo, Suhkneung (School of Pharmacy, Sungkyunkwan University) ;
  • Rhee, Dong-Kwon (School of Pharmacy, Sungkyunkwan University)
  • Received : 2014.08.19
  • Accepted : 2014.10.29
  • Published : 2015.01.31


Activating transcription factor-3 (ATF3) acts as a negative regulator of cytokine production during Gram-negative bacterial infection. A recent study reported that ATF3 provides protection from Streptococcus pneumoniae infection by activating cytokines. However, the mechanism by which S. pneumoniae induces ATF3 after infection is still unknown. In this study, we show that ATF3 was upregulated via Toll-like receptor (TLR) pathways in response to S. pneumoniae infection in vitro. Induction was mediated by TLR4 and TLR2, which are in the TLR family. The expression of ATF3 was induced by pneumolysin (PLY), a potent pneumococcal virulence factor, via the TLR4 pathway. Furthermore, ATF3 induction is mediated by p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK). Thus, this study reveals a potential role of PLY in modulating ATF3 expression, which is required for the regulation of immune responses against pneumococcal infection in macrophages.


activating transcription factor-3 (ATF3);pneumococcal infection;pneumolysin (PLY);S. pneumoniae;Toll-like receptors (TLR)


Supported by : Korea Health Industry Development Institute


  1. Aung, H.H., Lame, M.W., Gohil, K., An, C.-I., Wilson, D.W., and Rutledge, J.C. (2013). Induction of ATF3 gene network by triglyceride- rich lipoprotein lipolysis products increases vascular apoptosis and inflammation. Arterioscler. Thromb. Vasc. Biol. 33, 2088-2096.
  2. Basset, A., Zhang, F., Benes, C., Sayeed, S., Herd, M., Thompson, C., Golenbock, D.T., Camilli, A., and Malley, R. (2012). Toll-like receptor (TLR) 2 mediates inflammatory responses to oligomerized RrgA pneumococcal pilus type 1 protein. J. Biol. Chem. 288, 2665-2675.
  3. Benton, K.A., Everson, M.P., and Briles, D.E. (1995). A pneumolysinnegative mutant of Streptococcus pneumoniae causes chronic bacteremia rather than acute sepsis in mice. Infect. Immun. 63, 448-455.
  4. Boespflug, N.D., Kumar, S., McAlees, J.W., Phelan, J.D., Grimes, H.L., Hoebe, K., Hai, T., Filippi, M.-D., and Karp, C.L. (2014). ATF3 is a novel regulator of mouse neutrophil migration. Blood 123, 2084-2093.
  5. Calton, C.M., Wade, L.K., and So, M. (2013). Upregulation of ATF3 inhibits expression of the pro-inflammatory cytokine IL-6 during Neisseria gonorrhoeae infection. Cell. Microbiol. 15, 1837-1850.
  6. Choi, I.H., Shim, J.H., Kim, S.W., Kim, S.N., Pyo, S.N., and Rhee, D.K. (1999). Limited stress response in Streptococcus pneumoniae. Microbiol. Immunol. 43, 807-812.
  7. Dessing, M.C., Schouten, M., Draing, C., Levi, M., von Aulock, S., and van der Poll, T. (2008). Role played by Toll-like receptors 2 and 4 in lipoteichoic acid-induced lung inflammation and coagulation. J. Infect. Dis. 197, 245-252.
  8. File, Jr., T.M. (2004). Streptococcus pneumoniae and communityacquired pneumonia: a cause for concern. Am. J. Med. 117, 39-50.
  9. Filen, S., Ylikoski, E., Tripathi, S., West, A., Bjorkman, M., Nystrom, J., Ahlfors, H., Coffey, E., Rao, K.V.S., Rasool, O., et al. (2010). Activating transcription factor 3 is a positive regulator of human IFNG gene expression. J. Immunol. 184, 4990-4999.
  10. Gilchrist, M., Thorsson, V., Li, B., Rust, A.G., Korb, M., Kennedy, K., Hai, T., Bolouri, H., and Aderem, A. (2006). Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441, 173-178.
  11. Gilchrist, M., Henderson, W.R., Clark, A.E., Simmons, R.M., Ye, X., Smith, K.D., and Aderem, A. (2008). Activating transcription factor 3 is a negative regulator of allergic pulmonary inflammation. J. Exp. Med. 205, 2349-2357.
  12. Gilchrist, M., Henderson, W.R., Jr, Morotti, A., Johnson, C.D., Nachman, A., Schmitz, F., Smith, K.D., and Aderem, A. (2010). A key role for ATF3 in regulating mast cell survival and mediator release. Blood 115, 4734-4741.
  13. Hai, T., Wolfgang, C., Marsee, D., Allen, A., and Sivaprasad, U. (1999). ATF3 and stress responses. Gene Expr. 7, 321-335.
  14. Hoetzenecker, W., Echtenacher, B., Guenova, E., Hoetzenecker, K., Woelbing, F., Bruck, J., Teske, A., Valtcheva, N., Fuchs, K., Kneilling, M., et al. (2012). ROS-induced ATF3 causes susceptibility to secondary infections during sepsis-associated immunosuppression. Nat. Med. 18, 128-134.
  15. Hyams, C., Camberlein, E., Cohen, J.M., Bax, K., and Brown, J.S. (2010). The Streptococcus pneumoniae capsule inhibits complement activity and neutrophil phagocytosis by multiple mechanisms. Infect. Immun. 78, 704-715.
  16. Kabelitz, D. (2007). Expression and function of Toll-like receptors in T lymphocytes. Curr. Opin. Immunol. 19, 39-45.
  17. Kallunki, T., Deng, T., Hibi, M., and Karin, M. (1996). c-Jun can recruit JNK to phosphorylate dimerization partners via specific docking interactions. Cell 87, 929-939.
  18. Kang, E.H., Gebru, E., Kim, M.H., Cheng, H., and Park, S.-C. (2009). EstA protein, a novel virulence factor of Streptococcus pneumoniae, induces nitric oxide and pro-inflammatory cytokine production in RAW 264.7 macrophages through NF-${\kappa}B$/MAPK. Microb. Pathog. 47, 196-201.
  19. Kenzel, S., Mancuso, G., Malley, R., Teti, G., Golenbock, D.T., and Henneke, P. (2006). c-Jun kinase is a critical signaling molecule in a neonatal model of group B streptococcal sepsis. J. Immunol. 176, 3181-3188.
  20. Khuu, C.H., Barrozo, R.M., Hai, T., and Weinstein, S.L. (2007). Activating transcription factor 3 (ATF3) represses the expression of CCL4 in murine macrophages. Mol. Immunol. 44, 1598-1605.
  21. Koppe, U., Suttorp, N., and Opitz, B. (2012). Recognition of Streptococcus pneumoniae by the innate immune system. Cell Microbiol. 14, 460-466.
  22. Lai, P.-F., Cheng, C.-F., Lin, H., Tseng, T.-L., Chen, H.-H., and Chen, S.-H. (2013). ATF3 protects against LPS-induced inflammation in mice via inhibiting HMGB1 expression. Evid. Based Complement. Alternat. Med. 2013, 716481.
  23. Li, L., Feng, Z., and Porter, A.G. (2004). JNK-dependent phosphorylation of c-Jun on serine 63 mediates nitric oxide-induced apoptosis of neuroblastoma cells. J. Biol. Chem. 279, 4058-4065.
  24. Lu, D., Chen, J., and Hai, T. (2007). The regulation of ATF3 gene expression by mitogen-activated protein kinases. Biochem. J. 401, 559-567.
  25. Malley, R., Henneke, P., Morse, S.C., Cieslewicz, M.J., Lipsitch, M., Thompson, C.M., Kurt-Jones, E., Paton, J.C., Wessels, M.R., and Golenbock, D.T. (2003). Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc. Natl. Acad. Sci. USA 100, 1966-1971.
  26. McNeela, E.A., Burke, A., Neill, D.R., Baxter, C., Fernandes, V.E., Ferreira, D., Smeaton, S., El-Rachkidy, R., McLoughlin, R.M., Mori, A., et al. (2010). Pneumolysin activates the NLRP3 inflammasome and promotes proinflammatory cytokines independently of TLR4. PLoS Pathog. 6, e1001191.
  27. N'Guessan, P.D., Hippenstiel, S., Etouem, M.O., Zahlten, J., Beermann, W., Lindner, D., Opitz, B., Witzenrath, M., Rosseau, S., Suttorp, N., et al. (2006). Streptococcus pneumoniae induced p38 MAPK- and NF-${\kappa}B$-dependent COX-2 expression in human lung epithelium. Am. J. Physiol. Lung Cell Mol. Physiol. 290, L1131-L1138.
  28. Nguyen, C.T., Kim, E.H., Luong, T.T., Pyo, S., and Rhee, D.-K. (2014a). ATF3 confers resistance to pneumococcal infection through positive regulation of cytokine production. J. Infect. Dis. 210, 1745-1754.
  29. Nguyen, C.T., Le, N.-T., Tran, T.D.-H., Kim, E.-H., Park, S.-S., Luong, T.T., Chung, K.-T., Pyo, S., and Rhee, D.-K. (2014b). S. pneumoniae ClpL modulates adherence to A549 human lung cells through Rap1/Rac1 activation. Infect. Immun. 82, 3802-3810.
  30. Rosenberger, C.M., Clark, A.E., Treuting, P.M., Johnson, C.D., and Aderem, A. (2008). ATF3 regulates MCMV infection in mice by modulating IFN-gamma expression in natural killer cells. Proc. Natl. Acad. Sci. USA 105, 2544-2549.
  31. Schmeck, B., Moog, K., Zahlten, J., van Laak, V., N'Guessan, P., Opitz, B., Rosseau, S., Suttorp, N., and Hippenstiel, S. (2006). Streptococcus pneumoniae induced c-Jun-N-terminal kinaseand AP-1 -dependent IL-8 release by lung epithelial BEAS-2B cells. Respir. Res. 7, 98.
  32. Schroder, N.W.J., Morath, S., Alexander, C., Hamann, L., Hartung, T., Zahringer, U., Gobel, U.B., Weber, J.R., and Schumann, R.R. (2003). Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J. Biol. Chem. 278, 15587-15594.
  33. Thompson, M., Xu, D., and Williams, B. (2009). ATF3 transcription factor and its emerging roles in immunity and cancer. J. Mol. Med. 87, 1053-1060.
  34. Tu, L.N., Jeong, H.-Y., Kwon, H.-Y., Ogunniyi, A.D., Paton, J.C., Pyo, S.-N., and Rhee, D.-K. (2007). Modulation of adherence, invasion, and tumor necrosis factor alpha secretion during the early stages of infection by Streptococcus pneumoniae ClpL. Infect. Immun. 75, 2996-3005.
  35. Wartha, F., Beiter, K., Albiger, B., Fernebro, J., Zychlinsky, A., Normark, S., and Henriques-Normark, B. (2007). Capsule and dalanylated lipoteichoic acids protect Streptococcus pneumoniae against neutrophil extracellular traps. Cell. Microbiol. 9, 1162-1171.

Cited by

  1. Subcutaneous Immunization with Fusion Protein DnaJ-ΔA146Ply without Additional Adjuvants Induces both Humoral and Cellular Immunity against Pneumococcal Infection Partially Depending on TLR4 vol.8, 2017,