Long Non-coding RNAs are Differentially Expressed in Hepatocellular Carcinoma Cell Lines with Differing Metastatic Potential

  • Fang, Ting-Ting (Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital) ;
  • Sun, Xiao-Jing (Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital) ;
  • Chen, Jie (Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital) ;
  • Zhao, Yan (Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital) ;
  • Sun, Rui-Xia (Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital) ;
  • Ren, Ning (Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital) ;
  • Liu, Bin-Bin (Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital)
  • Published : 2015.01.06


Background: Metastasis is a major reason for poor prognosis in patients with cancer, including hepatocellular carcinoma (HCC). A salient feature is the ability of cancer cells to colonize different organs. Long non-coding RNAs (lncRNAs) play important roles in numerous cellular processes, including metastasis. Materials and Methods: In this study, the lncRNA expression profiles of two HCC cell lines, one with high potential for metastasis to the lung (HCCLM3) and the other to lymph nodes (HCCLYM-H2) were assessed using the Arraystar Human LncRNA Array v2.0, which contains 33,045 lncRNAs and 30,215 mRNAs. Coding-non-coding gene co-expression (CNC) networks were constructed and gene set enrichment analysis (GSEA) was performed to identify lncRNAs with potential functions in organ-specific metastasis. Levels of two representative lncRNAs and one representative mRNA, RP5-1014O16.1, lincRNA-TSPAN8 and TSPAN8, were further detected in HCC cell lines with differing metastasis potential by qRT-PCR. Results: Using microarray data, we identified 1,482 lncRNAs and 1,629 mRNAs that were differentially expressed (${\geq}1.5$ fold-change) between the two HCC cell lines. The most upregulated lncRNAs in H2 were RP11-672F9.1, RP5-1014O16.1, and RP11-501G6.1, while the most downregulated ones were lincRNA-TSPAN8, lincRNA-CALCA, C14orf132, NCRNA00173, and CR613944. The most upregulated mRNAs in H2 were C15orf48, PSG2, and PSG8, while the most downregulated ones were CALCB, CD81, CD24, TSPAN8, and SOST. Among them, lincRNA-TSPAN8 and TSPAN8 were found highly expressed in high lung metastatic potential HCC cells, while lowly expressed in no or low lung metastatic potential HCC cells. RP5-1014O16.1 was highly expressed in high lymphatic metastatic potential HCC cell lines, while lowly expressed in no lymphatic metastatic potential HCC cell lines. Conclusions: We provide the first detailed description of lncRNA expression profiles related to organ-specific metastasis in HCC. We demonstrated that a large number of lncRNAs may play important roles in driving HCC cells to metastasize to different sites; these lncRNAs may provide novel molecular biomarkers and offer a new basis for combating metastasis in HCC cases.


Hepatocellular carcinoma;organ-specific metastasis;long non-coding RNA;RP5-1014O16.1;expression


  1. Barabasi AL (2004). Network biology: Understanding the cell's functional organization. Nat Rev Genet, 5, 101-15.
  2. Bartel DP (2009). MicroRNAs: Target Recognition and Regulatory Functions. Cell, 136, 215-33.
  3. Berteaux N, Aptel N, Cathala G, et al (2008). A novel H19 antisense rna overexpressed in breast cancer contributes to paternal IGF2 expression. Mol Cell Biol, 28, 6731-45.
  4. Bertone P, Stolc V, Royce TE, et al (2004). Global identification of human transcribed sequences with genome tiling arrays. Science, 306, 2242-6.
  5. Braconi C, Valeri N, Kogure T, et al (2011). Expression and functional role of a transcribed noncoding RNA with an ultraconserved element in hepatocellular carcinoma. Proc Nat Acad Sci USA, 108, 786-91.
  6. Bussemakers M, Verhaegh GW, Karthaus H, et al (1999). DD3: A new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res, 59.
  7. Cabili MN, Trapnell C, Goff L, et al (2011). Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev, 25, 1915-27.
  8. Chen W, Bocker W, Brosius J, et al (1997). Expression of neural BC200 RNA in human tumours. J Pathol, 183, 345-51.<345::AID-PATH930>3.0.CO;2-8
  9. Guttman M, Rinn JL (2012). Modular regulatory principles of large non-coding RNAs. Nature, 482, 339-46.
  10. Hanahan D, Weinberg RA (2011). Hallmarks of cancer: the next generation. Cell, 144, 646-74.
  11. He Y, Meng XM, Huang C, et al (2014). Long noncoding RNAs: Novel insights into hepatocelluar carcinoma. Cancer Lett, 344, 20-7.
  12. Hibi K, Nakamura H, Hirai A, et al (1996). Loss of H19 imprinting in esophageal cancer. Cancer Res, 56, 480-2.
  13. Hong SS, Kim TK, Sung KB, et al (2003). Extrahepatic spread of hepatocellular carcinoma: a pictorial review. Eur Radiol, 13, 874-82.
  14. Iacoangeli A, Lin Y, Morley EJ, et al (2004). BC200 RNA in invasive and preinvasive breast cancer. Carcinogenesis, 25, 2125-33.
  15. Jemal A, Bray F, Center MM, et al (2011). Global cancer statistics. CA-Cancer J Clin, 61, 69-90.
  16. Ji P, Wang WB, Metzger R, et al (2003). MALAT-1, a novel noncoding RNA, and thymosin beta 4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 22, 8031-41.
  17. Kanetaka K, Sakamoto M, Yamamoto Y, et al (2001). Overexpression of tetraspanin CO-029 in hepatocellular carcinoma. J Hepatol, 35, 637-42.
  18. Kanetaka K, Sakamoto M, Yamamoto Y, et al (2003). Possible involvement of tetraspanin CO-029 in hematogenous intrahepatic metastasis of liver cancer cells. J Gastroenterol Hepatol, 18, 1309-14.
  19. Kapranov P, Cawley SE, Drenkow J, et al (2002). Large-scale transcriptional activity in chromosomes 21 and 22. Science, 296, 916-9.
  20. Guttman M, Donaghey J, Carey BW, et al (2011). lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature, 477, 295-300.
  21. de Kok JB, Verhaegh GW, Roelofs RW, et al (2002). DD3 (PCA3)., a very sensitive and specific marker to detect prostate tumors. Cancer Res, 62, 2695-8.
  22. Dexter DL, Kowalski HM, Blazar BA, et al (1978). Heterogeneity of tumor cells from a single mouse mammary tumor. Cancer Res, 38, 3174-81.
  23. Fejes-Toth K, Sotirova V, Sachidanandam R, et al (2009). Post-transcriptional processing generates a diversity of 5'-modified long and short RNAs. Nature, 457, 1028-32.
  24. Fritah A, Saucier C, De Wever O, et al (2008). Role of WISP-2/ CCN5 in the maintenance of a differentiated and noninvasive phenotype in human breast cancer cells. Mol Cell Biol, 28, 1114-23.
  25. Genda T, Ichida T, Kojiro M, et al (1999). Cell motility mediated by Rho and Rho-associated protein kinase plays a critical role in intrahepatic metastasis of human hepatocellular carcinoma. Hepatology, 30, 1027-36.
  26. Gesierich S, Berezovskiy I, Ryschich E, et al (2006). Systemic induction of the angiogenesis switch by the tetraspanin D6.1A/CO-029. Cancer Res, 66, 7083-94.
  27. Guo FJ, Li YL, Liu Y, et al (2010). Inhibition of metastasisassociated lung adenocarcinoma transcript 1 in CaSki human cervical cancer cells suppresses cell proliferation and invasion. Acta Biochim Biophys Sin, 42, 224-9.
  28. Gupta RA, Shah N, Wang KC, et al (2010). Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 464, 1071-6.
  29. Guttman M, Amit I, Garber M, et al (2009). Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 458, 223-7.
  30. Da Sacco L, Baldassarre A, Masotti A (2012). Bioinformatics Tools and Novel Challenges in Long Non-Coding RNAs (lncRNAs). Functional Analysis. Int J Mol Sci, 13, 97-114.
  31. Kmita M, Duboule D (2003). Organizing axes in time and space; 25 years of colinear tinkering. Science, 301, 331-3.
  32. Lemons D, McGinnis W (2006). Genomic evolution of Hox gene clusters. Science, 313, 1918-22.
  33. Li Y, Tang Y, Ye L, et al (2003). Establishment of a hepatocellular carcinoma cell line with unique metastatic characteristics through in vivo selection and screening for metastasis-related genes through cDNA microarray. J Cancer Res Clin Oncol, 129, 43-51.
  34. Li Y, Tang ZY, Ye SL, et al (2001). Establishment of cell clones with different metastatic potential from the metastatic hepatocellular carcinoma cell line MHCC97. World J Gastroenterol, 7, 630-6.
  35. Lin R, Maeda S, Liu C, et al (2007). A large noncoding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas. Oncogene, 26, 851-8.
  36. Llovet JM, Lencioni R, Gaile PR, et al (2012). EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol, 56, 908-43.
  37. Lu X, Kang Y (2007). Organotropism of breast cancer metastasis. J Mammary Gland Biol Neoplasia, 12, 153-62.
  38. Matouk IJ, Abbasi I, Hochberg A, et al (2009). Highly upregulated in liver cancer noncoding RNA is overexpressed in hepatic colorectal metastasis. Eur J Gastroenterol Hepatol, 21, 688-92.
  39. Mercer TR, Dinger ME, Mattick JS (2009). Long non-coding RNAs: insights into functions. Nat Rev Genet, 10, 155-9.
  40. Khalil AM, Guttman M, Huarte M, et al (2009). Many human large intergenic noncoding RNAs associate with chromatinmodifying complexes and affect gene expression. Proc Natl Acad Sci U S A, 106, 11667-72.
  41. Mourtada-Maarabouni M, Pickard MR, Hedge VL, et al (2009). GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene, 28, 195-208.
  42. Nguyen DX, Bos PD, Massague J (2009). Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer, 9, 274-84.
  43. Nupponen NN, Carpten JD (2001). Prostate cancer susceptibility genes: many studies, many results, no answers. Cancer Metastasis Rev, 20, 155-64.
  44. Ohta M, Seto M, Miyabayashi K, et al (2009). Decreased expression of the RAS-GTPase activating protein RASAL1 is associated with colorectal tumor progression. Gastroenterology, 136, 206-16.
  45. Okazaki Y, Furuno M, Kasukawa T, et al (2002). Analysis of the mouse transcriptome based on functional annotation of 60, 770 full-length cDNAs. Nature, 420, 563-73.
  46. Orom UA, Derrien T, Beringer M, et al (2010). Long Noncoding RNAs with Enhancer-like Function in Human Cells. Cell, 143, 46-58.
  47. Panzitt K, Tschernatsch MM, Guelly C, et al (2007). Characterization of HULC, a novel gene with striking upregulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology, 132, 330-42.
  48. Pibouin L, Villaudy J, Ferbus D, et al (2002). Cloning of the mRNA of overexpression in colon carcinoma-1: a sequence overexpressed in a subset of colon carcinomas. Cancer Genet Cytogenet, 133, 55-60.
  49. Ponting CP, Oliver PL, Reik W (2009). Evolution and Functions of Long Noncoding RNAs. Cell, 136, 629-41.
  50. Mootha VK, Lindgren CM, Eriksson KF, et al (2003). PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet, 34, 267-73.
  51. Sporn JC, Kustatscher G, Hothorn T, et al (2009). Histone macroH2A isoforms predict the risk of lung cancer recurrence. Oncogene, 28, 3423-8.
  52. Subramanian A, Tamayo P, Mootha VK, et al (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA, 102, 15545-50.
  53. Sun FX, Tang ZY, Lui KD, et al (1996). Establishment of a metastatic model of human hepatocellular carcinoma in nude mice via orthotopic implantation of histologically intact tissues. Int J Cancer, 66, 239-43.<239::AID-IJC17>3.0.CO;2-7
  54. Taft RJ, Pang KC, Mercer TR, et al (2010). Non-coding RNAs: regulators of disease. J Pathol, 220, 126-39.
  55. Talmadge JE, Fidler IJ (2010). AACR Centrspective. Cancer Res, 70, 5649-69.
  56. Tinzl M, Horvath S (2004). DD3 (PCA3). RNA analysis in urine - A new perspective for detecting prostate cancer. Eur Urol, 46, 182-7.
  57. Uchino H, Kataoka H, Itoh H, et al (2000). Overexpression of intestinal trefoil factor in human colon carcinoma cells reduces cellular growth in vitro and in vivo. Gastroenterol, 118, 60-9.
  58. Wang JY, Liu XF, Wu HC, et al (2010). CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res, 38, 5366-83.
  59. Wang Y, Liu XJ, Yao XD (2014). Function of PCA3 in prostate tissue and clinical research progress on developing a PCA3 score. Chin J Cancer Res, 26, 493-500.
  60. Wapinski O, Chang HY (2011). Long noncoding RNAs and human disease. Trends Cell Biol, 21, 354-61.
  61. Wilusz JE, Sunwoo H, Spector DL (2009). Long noncoding RNAs: functional surprises from the RNA world. Genes Dev, 23, 1494-504.
  62. Prieto C, Risueno A, Fontanillo C, et al (2008). Human gene coexpression landscape: confident network derived from tissue transcriptomic profiles. PLoS Onee, 3.
  63. Qiao HP, Gao WS, Huo JX, et al (2013). Long non-coding RNA GAS5 functions as a tumor suppressor in renal cell carcinoma. Asian Pac J Cancer Prev, 14, 1077-82.
  64. Qiu MT, Hu JW, Yin R, et al (2013). Long noncoding RNA: an emerging paradigm of cancer research. Tumour Biol, 34, 613-20.
  65. Rangel L, Wernyj RP, Cho KR (2003). Characterization of novel human ovarian cancer-specific transcripts (HOSTs). identified by serial analysis of gene expression. Oncogene, 22, 7225-32.
  66. Ren S, Wang F, Shen J, et al (2013). Long non-coding RNA metastasis associated in lung adenocarcinoma transcript 1 derived miniRNA as a novel plasma-based biomarker for diagnosing prostate cancer. Eur J Cancer, 49, 2949-59.
  67. Rinn JL, Wang JK, Xu X, et al (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by Noncoding RNAs. Cell, 129, 1311-23.
  68. Seto M, Ohta M, Ikenoue T, et al (2011). Reduced expression of RAS protein activator like-1 in gastric cancer. Int J Cancer, 128, 1293-302.
  69. Simon JA, Kingston RE (2009). Mechanisms of Polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol, 10, 697-708.
  70. Smedley D, Sidhar S, Birdsall S, et al (2000). Characterization of chromosome 1 abnormalities in malignant melanomas. Genes Chromosomes Cancer, 28, 121-5.<121::AID-GCC14>3.0.CO;2-O
  71. Poon R, Wong J (2000). Risk factors, prevention, and management of postoperative recurrence after resection of hepatocellular carcinoma. Ann Surg, 232.
  72. Yamada K, Kano J, Tsunoda H, et al (2006). Phenotypic characterization of endometrial stromal sarcoma of the uterus. Cancer Sci, 97, 106-12.
  73. Yang F, Zhang L, Huo XS, et al (2011). Long noncoding RNA high expression in hepatocellular carcinoma facilitates tumor growth through enhancer of zeste homolog 2 in humans. Hepatology, 54, 1679-89.
  74. Ye QH, Forgues M, Kim JW, et al (2003). Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat Med, 9, 416-23.
  75. Yue S, Mu W, Zoller M (2013). Tspan8 and CD151 promote metastasis by distinct mechanisms. Eur J Cancer, 49, 2934-48.
  76. Zhang EB, Han L, Yin DD, et al (2014). c-Myc-induced, long, noncoding H19 affects cell proliferation and predicts a poor prognosis in patients with gastric cancer. Med Oncol, 31, 914.
  77. Zhang H, Cai K, Wang J, et al (2014). MiR-7, Inhibited indirectly by lincRNA HOTAIR, directly inhibits SETDB1 and reverses the EMT of breast cancer stem cells by downregulating the STAT3 pathway. Stem Cells, 32, 2858-68.
  78. Xie H, Ma H, Zhou D (2013). Plasma HULC as a promising novel biomarker for the detection of hepatocellular carcinoma. Biomed Res Int, 2013, 136106.

Cited by

  1. Long Non-coding RNA TUSC7, a Target of miR-23b, Plays Tumor-Suppressing Roles in Human Gliomas vol.10, pp.1662-5102, 2016,
  2. C14orf132 gene is possibly related to extremely low birth weight vol.17, pp.1, 2016,
  3. Potential diagnostic value of lncRNA SPRY4-IT1 in hepatocellular carcinoma vol.36, pp.2, 2016,
  4. Long noncoding RNA HOTAIR is a prognostic biomarker and inhibits chemosensitivity to doxorubicin in bladder transitional cell carcinoma vol.77, pp.3, 2016,
  5. Silence of long noncoding RNA UCA1 inhibits malignant proliferation and chemotherapy resistance to adriamycin in gastric cancer vol.77, pp.5, 2016,
  6. Long Non-Coding RNA SNHG6 as a Potential Biomarker for Hepatocellular Carcinoma pp.1532-2807, 2017,
  7. A three-lncRNA expression signature predicts survival in head and neck squamous cell carcinoma (HNSCC) vol.38, pp.6, 2018,
  8. study of the role of long non-coding RNA-HOST2 in the proliferation, migration, and invasion of human glioma cells pp.15216543, 2018,
  9. Knockdown long non-coding RNA ANRIL inhibits proliferation, migration and invasion of HepG2 cells by down-regulation of miR-191 vol.18, pp.1, 2018,
  10. Systematic analyses of a novel lncRNA-associated signature as the prognostic biomarker for Hepatocellular Carcinoma vol.7, pp.7, 2018,
  11. Transforming Growth Factor-β and Axl Induce CXCL5 and Neutrophil Recruitment in Hepatocellular Carcinoma vol.69, pp.1, 2018,