DOI QR코드

DOI QR Code

MiR-323-5p acts as a Tumor Suppressor by Targeting the Insulin-like Growth Factor 1 Receptor in Human Glioma Cells

  • Lian, Hai-Wei (Department of Neurosurgery, Wuhan University Renmin Hospital) ;
  • Zhou, Yun (Department of Gynaecology, Wuhan University Renmin Hospital) ;
  • Jian, Zhi-Hong (Department of Neurosurgery, Wuhan University Renmin Hospital) ;
  • Liu, Ren-Zhong (Department of Neurosurgery, Wuhan University Renmin Hospital)
  • Published : 2015.01.06

Abstract

Background: MicroRNAs, small noncoding RNA molecules, can regulate mammalian cell growth, apoptosis and differentiation by controlling the expression of target genes. The aim of this study was to investigate the function of miR-323-5p in the glioma cell line, U251. Materials and Methods: After over-expression of miR-323-5p using miR-323-5p mimics, cell growth, apoptosis and migration were tested by MTT, flow cytometry and cell wound healing assay, respectively. We also assessed the influence of miR-323-5p on the mRNA expression of IGF-1R by quantitative real-time reverse transcriptase PCR (qRT-PCR), and on the protein levels by Western blot analysi. In addition, dual-luciferase reporter assays were performed to determine the target site of miR-323-5p to IGF-1R 3'UTR. Results: Our findings showed that over-expression of miR-323-5p could promote apoptosis of U251 and inhibit the proliferation and migration of the glioma cells. Conclusions: This study demonstrated that increased expression of miR-323-5p might be related to glioma progression, which indicates a potential role of miR-323-5p for clinical therapy.

Keywords

miR-323-5p;glioma;proliferation;apoptosis;IGF-1R

References

  1. Chan JA, Krichevsky AM, Kosik KS, et al (2005). MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res, 65, 6029-33. https://doi.org/10.1158/0008-5472.CAN-05-0137
  2. Chen G, Shen ZL, Wang L, et al (2013). Hsa-miR-181a-5p expression and effects on cell proliferation in gastric cancer. Asian Pac J Cancer Prev, 14, 3871-5. https://doi.org/10.7314/APJCP.2013.14.6.3871
  3. Esquela-Kerscher A, Slack FJ (2006). Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer, 6, 259-69. https://doi.org/10.1038/nrc1840
  4. Furnari FB, Fenton T, Bachoo RM, et al (2007). Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev, 21, 2683-710. https://doi.org/10.1101/gad.1596707
  5. Ge YF, Sun J, Jin CJ, et al (2013). AntagomiR-27a targets FOXO3a in glioblastoma and suppresses U87 cell growth in vitro and in vivo. Asian Pac J Cancer Prev, 14, 963-8. https://doi.org/10.7314/APJCP.2013.14.2.963
  6. Gu S, Jin L, Zhang F, et al (2009). Biological basis for restriction of microRNA targets to the 3'untranslated region in mammalian mRNAs. Nat Struct Mol Biol, 16, 144-50. https://doi.org/10.1038/nsmb.1552
  7. Gualberto A, Pollak M (2009). Clinical development of inhibitors of the insulin-like growth factor receptor in oncology. Curr Drug Targets, 10, 923-36. https://doi.org/10.2174/138945009789577945
  8. Huang F, Lin C, Shi YH, et al (2013). MicroRNA-101 inhibits cell proliferation, invasion, and promotes apoptosis by regulating cyclooxygenase-2 in Hela cervical carcinoma cells. Asian Pac J Cancer Prev, 14, 5915-20. https://doi.org/10.7314/APJCP.2013.14.10.5915
  9. Jansen M, Yip S, Louis DN (2010). Molecular pathology in adult gliomas: diagnostic, prognostic, and predictive markers. Lancet Neurol, 9, 717-26. https://doi.org/10.1016/S1474-4422(10)70105-8
  10. Jiang QQ, Liu B, Yuan T (2013). MicroRNA-16 inhibits bladder cancer proliferation by targeting cyclin D1. Asian Pac J Cancer Prev, 14, 4127-30. https://doi.org/10.7314/APJCP.2013.14.7.4127
  11. Jovanovic M, Hengartner MO (2006). miRNAs and apoptosis: RNAs to die for. Oncogene, 25, 6176-87. https://doi.org/10.1038/sj.onc.1209912
  12. Kent OA, Mendell JT (2006). A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene, 25, 6188-96. https://doi.org/10.1038/sj.onc.1209913
  13. Lavon I, Zrihan D, Granit A, et al (2010). Gliomas display a microRNA expression profile reminiscent of neural precursor cells. Neuro Oncol, 12, 422-33.
  14. LeRoith D, Helman L (2004). The new kid on the block (ade) of the IGF-1 receptor. Cancer Cell, 5, 201-2. https://doi.org/10.1016/S1535-6108(04)00054-6
  15. Lynam-Lennon N, Maher SG, Reynolds JV (2009). The roles of microRNA in cancer and apoptosis. Biol Rev Camb Philos Soc, 84, 55-71. https://doi.org/10.1111/j.1469-185X.2008.00061.x
  16. Meng F, Henson R, Wehbe-Janek H, et al (2007). MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterol, 133, 647-58. https://doi.org/10.1053/j.gastro.2007.05.022
  17. Motoyama K, Inoue H, Takatsuno Y, et al (2009). Over- and under-expressed microRNAs in human colorectal cancer. Int J Oncol, 34, 1069-75.
  18. Nam EJ, Yoon H, Kim SW, et al (2008). MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res, 14, 2690-5. https://doi.org/10.1158/1078-0432.CCR-07-1731
  19. Purow B, Schiff D (2009). Advances in the genetics of glioblastoma: are we reaching critical mass? Nat Rev Neurol, 5, 419-26. https://doi.org/10.1038/nrneurol.2009.96
  20. Qiu S, Lin S, Hu D, et al (2013). Interactions of miR-323/ miR-326/miR-329 and miR-130a/miR-155/miR-210 as prognostic indicators for clinical outcome of glioblastoma patients. J Transl Med, 9, 11-10.
  21. Resnicoff M, Abraham D, Yutanawiboonchai W, et al (1995). The insulin-like growth factor I receptor protects tumor cells from apoptosis in vivo. Cancer Res, 55, 2463-9.
  22. Ryan BM, Robles AI, Harris CC (2010). Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer, 10, 389-402. https://doi.org/10.1038/nrc2867
  23. Siva AC, Nelson LJ, Fleischer CL, et al (2009). Molecular assays for the detection of microRNAs in prostate cancer. Mol Cancer, 6, 8-17.
  24. Takamizawa J, Konishi H, Yanagisawa K, et al (2004). Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res, 64, 3753-6. https://doi.org/10.1158/0008-5472.CAN-04-0637
  25. Wen PY, Kesari S (2008). Malignant gliomas in adults. N Engl J Med, 359, 492-507. https://doi.org/10.1056/NEJMra0708126
  26. Xu Y, Luo S, Liu Y, et al (2013). Integrated gene network analysis and text mining revealing PIK3R1 regulated by miR-127 in human bladder cancer. Eur J Med Res, 18-29.
  27. Zhang B, Pan X, Cobb GP, et al (2007). MicroRNAs as oncogenes and tumor suppressors. Dev Biol, 302, 1-12. https://doi.org/10.1016/j.ydbio.2006.08.028

Cited by

  1. Expression level of miRNAs on chromosome 14q32.31 region correlates with tumor aggressiveness and survival of glioblastoma patients vol.130, pp.3, 2016, https://doi.org/10.1007/s11060-016-2248-0
  2. MicroRNAs in glioblastoma multiforme pathogenesis and therapeutics vol.5, pp.8, 2016, https://doi.org/10.1002/cam4.775
  3. Expression levels of microRNA-455 and its potential functions by targeting IGF-1R in melanoma vol.15, pp.6, 2017, https://doi.org/10.3892/mmr.2017.6468
  4. Aberrant Expression of miR-323a-5p in Patients with Refractory Epilepsy Caused by Focal Cortical Dysplasia vol.21, pp.1, 2017, https://doi.org/10.1089/gtmb.2016.0096
  5. MicroRNA-186 targets IGF-1R and exerts tumor-suppressing functions in glioma vol.16, pp.5, 2017, https://doi.org/10.3892/mmr.2017.7586
  6. MicroRNA-592 targets IGF-1R to suppress cellular proliferation, migration and invasion in hepatocellular carcinoma vol.13, pp.5, 2017, https://doi.org/10.3892/ol.2017.5902