DOI QR코드

DOI QR Code

Enhancement of carbon dioxide absorption rate with metal nano particles

금속 나노입자를 이용한 이산화탄소 흡수 속도 촉진

  • Choi, Young Ju (Green Energy Process Laboratory, Korea Institute of Energy Research) ;
  • Youn, Min Hye (Green Energy Process Laboratory, Korea Institute of Energy Research) ;
  • Park, Ki Tae (Green Energy Process Laboratory, Korea Institute of Energy Research) ;
  • Kim, In Ho (Department of Chemical Engineering, Chungnam National University) ;
  • Jeong, Soon Kwan (Green Energy Process Laboratory, Korea Institute of Energy Research)
  • 최영주, (한국에너지기술연구원 그린에너지공정연구실) ;
  • 윤민혜 (한국에너지기술연구원 그린에너지공정연구실) ;
  • 박기태 (한국에너지기술연구원 그린에너지공정연구실) ;
  • 김인호 (충남대학교 화학공학과) ;
  • 정순관 (한국에너지기술연구원 그린에너지공정연구실)
  • Received : 2015.09.24
  • Accepted : 2015.10.08
  • Published : 2015.10.31

Abstract

With increasing concern about global warming, CCS (Carbon dioxide capture and storage) has attracted much attention as a promising technology for reducing $CO_2$ emission. It is necessary to develop the cost-effective absorbents materials in order to rapid commercialize CCS technologies. In this work, he study for the promotion of absorption rate in $CO_2$ capture system using metal nanoparticle were investigated. Three kinds of metal nanoparticle, cobalt, zinc, and nickel, were prepared by wet and dry method and effect of preparation method on the absorption rate of $CO_2$ were compared. Among the tested using pH method, nickel nanoparticle prepared by wet method showed the most significant improvement of $CO_2$ absorption rate. In case that metal nanoparticle is applied to CCS process, it is expected to be more efficient in $CO_2$ capture process due to reduce the size of absorption tower.

Acknowledgement

Supported by : 한국에너지기술연구원

References

  1. D. H. Chu, M. Vinova, M. Bhagiyalakshmi, I. H. Baek, S. C. Nam, Y. Yoon, S. H. Kim, S. K. Jeong, "$CO_2$ mineralization into different polymorphs of $CaCO_3$ using an aqueous-$CO_2$ system", RSC Advances, vol. 3, pp. 21722-21729, 2013. DOI: http://dx.doi.org/10.1039/c3ra44007a https://doi.org/10.1039/c3ra44007a
  2. Fifth Assessment Report, IPCC, 2008
  3. M. Vinoba, M. Bhagiyalakshmi, A. N. Grace, D. H. Kim, Y. Yoon, S. C. Nam, I. H. Baek, S. K. Jeong, "Carbonic anhydrase promotes the absorption rate of $CO_2$ in post-combustion processes", Journal of Physical Chemistry B, vol. 117, pp.5683-5690, 2013. DOI: http://dx.doi.org/10.1021/jp401622c https://doi.org/10.1021/jp401622c
  4. K. H. Lee, B. Lee, J. H. Lee, J. K. You, K. T. Park, I. H. Baek, N. H. Hur, "Aqueous hydrazine as a promising candidate for capturing carbon dioxide", International Journal of Greenhouse Gas Control, vol. 29, pp.256-262, 2014. DOI: http://dx.doi.org/10.1016/j.ijggc.2014.08.018 https://doi.org/10.1016/j.ijggc.2014.08.018
  5. J. vanHolst, G.F. Versteeg, D.W.F. Brilman, J.A. Hogendoorn, "Kinetic study of $CO_2$ with various amino acid salts in aqueous solution", Chemical Engineering. Science, vol. 64, pp.59-68, 2009. DOI: http://dx.doi.org/10.1016/j.ces.2008.09.015 https://doi.org/10.1016/j.ces.2008.09.015
  6. G. B. Damas, A. B. A. Dias, L. T. Costa, "A quantum chemistry study for ionic liquids applied to gas capture and separation", Journal of Physical Chemistry B, vol. 118, pp.9046-9064, 2014. DOI: http://dx.doi.org/10.1021/jp503293j https://doi.org/10.1021/jp503293j
  7. G. M. Bond, J. Stringer, D. K. Brandvold, F. A Simsek, M-G. Medina, G. Egeland, "Development of integrated system for biomimetic $CO_2$ sequestration using the enzyme carbonic anhydrase", Energy & Fuels, vol 15, pp.309-316, 2001. DOI: http://dx.doi.org/10.1021/ef000246p https://doi.org/10.1021/ef000246p
  8. M. Vinoba, M. Bhagiyalakshmi, S. Y. Choi, K. T. Park, H. J. Kim, S. K. Jeong, "Harvesting $CaCO_3$ polymorphs from in situ $CO_2$ capture process", Journal of Physical Chemistry C, vol 118, pp.17556-17566, 2014. DOI: http://dx.doi.org/10.1021/jp503448y https://doi.org/10.1021/jp503448y
  9. M. Vinoba, M. Bhagiyalakshmi, A. N. Grace, D. H. Kim, Y. Yoon, S. C. Nam, I. H. Baek, S. G. Jeong, "Carbonic anhydrase promotes the absorption rate of $CO_2$ in post-combustion processes", Journal of Physical Chemistry B, vol 117, pp.5683-5690, 2013. DOI: http://dx.doi.org/10.1021/jp401622c https://doi.org/10.1021/jp401622c
  10. G. A. Bhaduri and L. Siller, "Nickel nanoparticles catalyse reversible hydration of carbon dioxide for mineralization carbon capture and storage," Catalysis Science & Technology, vol. 3, pp. 124-1239, 2013. DOI: http://dx.doi.org/10.1039/c3cy20791a https://doi.org/10.1039/c3cy20791a
  11. J.MC. Nathalie, P. W.j. Derks, S. Fradette, G. F. Versteeg, "Kinetics of absorption of carbon dioxide in aqueous MDEA solutions with carbonic anhydrase at 298 K," International Journal of Greenhouse Gas Control, vol 9, pp.385-392, 2012. DOI: http://dx.doi.org/10.1016/j.ijggc.2012.04.008 https://doi.org/10.1016/j.ijggc.2012.04.008