DOI QR코드

DOI QR Code

TOTAL IDENTITY-SUMMAND GRAPH OF A COMMUTATIVE SEMIRING WITH RESPECT TO A CO-IDEAL

  • Atani, Shahabaddin Ebrahimi (Faculty of Mathematical Sciences University of Guilan) ;
  • Hesari, Saboura Dolati Pish (Faculty of Mathematical Sciences University of Guilan) ;
  • Khoramdel, Mehdi (Faculty of Mathematical Sciences University of Guilan)
  • Received : 2014.05.09
  • Published : 2015.01.01

Abstract

Let R be a semiring, I a strong co-ideal of R and S(I) the set of all elements of R which are not prime to I. In this paper we investigate some interesting properties of S(I) and introduce the total identity-summand graph of a semiring R with respect to a co-ideal I. It is the graph with all elements of R as vertices and for distinct x, $y{\in}R$, the vertices x and y are adjacent if and only if $xy{\in}S(I)$.

Keywords

strong co-ideal;total identity-summand graph;identity-summand graph based a co-ideal;total identity-summand graph based a co-ideal

References

  1. A. Abbasi and S. Habibi, The total graph of a commutative ring with respect to proper ideals, J. Korean Math. Soc. 49 (2012), no. 1, 85-98. https://doi.org/10.4134/JKMS.2012.49.1.085
  2. I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208-226. https://doi.org/10.1016/0021-8693(88)90202-5
  3. D. F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra 320 (2008), no. 7, 2706-2719. https://doi.org/10.1016/j.jalgebra.2008.06.028
  4. D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative rings, J. Algebra 217 (1999), no. 2, 434-447. https://doi.org/10.1006/jabr.1998.7840
  5. M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison Wesley Publishing Company, 1969.
  6. A. Bondy and U. S. R. Murty, Graph Theory, Graduate Texts in Mathematics, 244. Springer, New York, 2008.
  7. D. Dolzan and P. Oblak, The zero-divisor graphs of rings and semirings, Internat. J. Algebra Comput. 22 (2012), no. 4, 1250033, 20 pp. https://doi.org/10.1142/S0218196712500336
  8. S. Ebrahimi Atani, The zero-divisor graph with respect to ideals of a commutative semiring, Glas. Mat. Ser. III 43(63) (2008), no. 2, 309-320. https://doi.org/10.3336/gm.43.2.06
  9. S. Ebrahimi Atani, An ideal-based zero-divisor graph of a commutative semiring, Glas. Matematicki 44(64) (2009), 141-153. https://doi.org/10.3336/gm.44.1.07
  10. S. Ebrahimi Atani, S. Dolati Pish Hesari, and M. Khoramdel, Strong co-ideal theory in quotients of semirings, J. Adv. Res. Pure Math. 5 (2013), no. 3, 19-32. https://doi.org/10.5373/jarpm.1482.061212
  11. S. Ebrahimi Atani, The Identity-Summand Graph of Commutative Semirings, J. Korean Math. Soc. 51 (2014), no. 1, 189-202. https://doi.org/10.4134/JKMS.2014.51.1.189
  12. S. Ebrahimi Atani, A co-ideal based identity-summand graph of a commutative semiring, submitted.
  13. S. Ebrahimi Atani, Total Graph of a Commutative semiring with respect to identity-summand elements, J. Korean Math. Soc. 51 (2014), no. 3, 593-607. https://doi.org/10.4134/JKMS.2014.51.3.593
  14. H. Wang, On rational series and rational language, Theoret. Comput. Sci. 205 (1998), no. 1-2, 329-336. https://doi.org/10.1016/S0304-3975(98)00103-0
  15. S. Ebrahimi Atani and F. Esmaeili Khalil Saraei, The total graph of a commutative semiring, An. Stiint. Univ. "Ovidius" Constanta Ser. Mat. 21 (2013), no. 2, 21-33.
  16. J. S. Golan, Semirings and Their Applications, Kluwer Academic Publishers Dordrecht, 1999.
  17. J. Kist, Minimal prime ideals in commutative semigroups, Proc. London Math. Soc. (3) 13 (1963), 31-50.