• Joo, Jae-Cheon (Department of Mathematics and Informatics University of Wuppertal) ;
  • Seo, Aeryeong (School of Mathematics Korea Institute for Advanced Study (KIAS))
  • Received : 2014.03.25
  • Published : 2015.01.01


We provide some relations between CR invariants of boundaries of strongly pseudoconvex domains and higher order asymptotic behavior of certain complete K$\ddot{a}$hler metrics of given domains. As a consequence, we prove a rigidity theorem of strongly pseudoconvex domains by asymptotic curvature behavior of metrics.


Supported by : National Research Foundation (NRF)


  1. E. Barletta, On the boundary behavior of the holomorphic sectional curvature of the Bergman metric, Matematiche (Catania) 61 (2006), no. 2, 301-316.
  2. S. S. Chern and S. Ji, On the Riemann mapping theorem, Ann. of Math (2) 144 (1996), no. 2, 421-439.
  3. K. Hirachi, Scalar pseudo-Hermitian invariants and the Szego kernel on three-dimensional CR manifolds, Complex geometry (Osaka, 1990), 67-76, Lecture Notes in Pure and Appl. Math., 143, Dekker, New York, 1993.
  4. S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219-271.
  5. C. Fefferman, On the Bergman kernel and biholomorphic mappings of pseudoconvex domains, Bull. Amer. Math. Soc. 80 (1974), no. 4, 667-669.
  6. C. R. Graham and J. M. Lee, Smooth solutions of degenerate Laplacians on strictly pseudoconvex domains, Duke Math. J. 57 (1988), no. 3, 697-720.
  7. K. T. Kim and J. Yu, Boundary behavior of the Bergman curvature in strictly pseudoconvex polyhedral domains, Pacific J. Math. 176 (1996), no. 1, 141-163.
  8. P. F. Klembeck, Kahler metrics of negative curvature, the Bergmann metric near the boundary, and the Kobayashi metric on smooth bounded strictly pseudoconvex sets, Indiana Univ. Math. J. 27 (1978), no. 2, 275-282.
  9. Q. K. Lu, On Kaehler manifolds with constant curvature, Acta Math. Sinica 16 (1966), 269-281 (Chinese); English transl. in Chinese Math. Acta 8 (1966), 283-298.
  10. N. Mok, The uniformization theorem for compact Kahler manifolds of nonnegative holomorphic bisectional curvature, J. Differential Geom. 27 (1988), no. 2, 179-214.
  11. S. Y. Nemirovskii and R. G. Shafikov, Uniformization of strictly pseudoconvex domains. I, Izv. Mat. 69 (2005), no. 6, 1189-1202.
  12. S. Y. Nemirovskii and R. G. Shafikov, Uniformization of strictly pseudoconvex domains. II, Izv. Mat. 69 (2005), no. 6, 1203-1210.
  13. Y.-T. Siu and S.-T. Yau, Complete Kahler manifolds with nonpositive curvature of faster than quadratic decay, Ann. of Math. (2) 105 (1977), no. 2, 225-264.
  14. S. I. Pincuk, Proper holomorphic maps of strictly pseudoconvex domains, (Russian) Sibirsk. Mat. Z. 15 (1974), 909-917, 959.
  15. N. Seshadri, Volume renormalization for complete Einstein-Kahler metrics, Differential Geom. Appl. 25 (2007), no. 4, 356-379.
  16. Y.-T. Siu, The complex-analyticity of harmonic maps and the strong rigidity of compact Kahler manifolds, Ann. of Math. (2) 112 (1980), no. 1, 73-111.
  17. Y.-T. Siu and S.-T. Yau, Compact Kahler manifolds of positive bisectional curvature, Invent. Math. 59 (1980), no. 2, 189-204.
  18. S. M. Webster, Pseudo-Hermitian structures on a real hypersurface, J. Differential Geom. 13 (1978), 25-41.

Cited by

  1. Intrinsic derivative, curvature estimates and squeezing function vol.60, pp.6, 2017,