On Non-Orthogonal Multiple Access (NOMA) in 5G Systems

5G 시스템에서의 비-직교 다중 액세스(NOMA)

  • Received : 2015.09.07
  • Accepted : 2015.12.15
  • Published : 2015.12.30


The non-orthogonal multiple access (NOMA) is one of the fledging paradigms which next generation radio access technologies are sprouting toward. The NOMA with superposition coding (SC) in the transmitter and successive interference cancellation (SIC) at the receiver comes with many desirable features and benefits over orthogonal multiple access (OMA) such as orthogonal frequency division multiple access (OFDMA) adopted by Long-Term Evolution (LTE). In this paper, we study the recent research trends on NOMA in 5G systems. We discuss the basic concept of NOMA and explain its aspects of importance for future radio access. Then, we provide a survey of the state of the art in NOMA for 5G systems in a categorized manner. Further, we analyze the NOMA performances with numerical examples; and provide some avenues for future research on NOMA on a set of open issues and challenges.


NOMA;Superposition coding(SC);Successive interference cancellation(SIC);Orthogonal multiple access(OMA);OFDMA


  1. P. Wang, J. Xiao, and L. Ping, "Comparison of orthogonal and non-orthogonal approaches to future wireless cellular systems," IEEE Veh. Technol. Mag., vol. 1, no. 3, pp. 4-11, Sept. 2006.
  2. A. Benjebbour, Y. Saito, Y. Kishiyama, L. Anxin, A. Harada, and T. Nakamura, "Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access," ISPACS, pp. 770-774, Nov. 2013.
  3. D. Tse and P. Viswanath, Fundamentals of Wireless Communication, Cambridge University Press, 2005.
  4. K. Higuchi and A. Benjebbour, "Non-orthogonal multiple access (NOMA) with successive interference cancellation," IEICE Trans. Commun., vol. E98-B, no. 3, pp. 403-414, Mar. 2015.
  5. Z. Ding, Z. Yang, P. Fan, and H. V. Poor, "On the Performance of non-orthogonal multiple access in 5G systems with randomly deployed users," IEEE Signal Process. Lett., vol. 21, no. 12, pp. 1501-1505, Dec. 2014.
  6. C. Xiaohang, A. Benjebbour, L. Yang, L. Anxin, and J. Huiling, "Impact of rank optimization on downlink non-orthogonal multiple access (NOMA) with SU-MIMO," IEEE ICCS, pp. 233-237, Nov. 2014.
  7. Z. Ding, M. Peng, and H. V. Poor, "Cooperative non-orthogonal multiple access in 5G systems," IEEE Commun. Lett., vol. 19, no. 8, pp. 1462-1465, Aug. 2015.
  8. Y. Hayashi, Y. Kishiyama, and K. Higuchi, "Investigations on power allocation among beams in non-orthogonal access with random beamforming and intra-beam SIC for cellular MIMO downlink," in Proc. IEEE Veh. Technol. Conf., Las Vegas, NV, USA, Sept. 2013.
  9. B. Kim, S. Lim, H. Kim, S. Suh, J. Kwun, S. Choi, C. Lee, S. Lee, and D. Hong, "Nonorthogonal multiple access in a downlink multiuser beamforming system," in Proc. IEEE Military Commun. Conf., San Diego, CA, USA, Nov. 2013.
  10. S. Timotheou and I. Krikidis, "Fairness for non-orthogonal multiple access in 5G systems," IEEE Signal Process. Lett., vol. 22, no. 10, pp. 1647-1651, Oct. 2015.
  11. J. Choi, "Non-orthogonal multiple access in downlink coordinated two-point systems," IEEE Commun. Lett., vol. 18, no. 2, pp. 313-316, Feb. 2014.
  12. S. Vanka, S. Srinivasa, Z. Gong, P. Vizi, K. Stamatiou, and M. Haenggi, "Superposition coding strategies: Design and experimental evaluation," IEEE Trans. Wirel. Commun., vol. 11, no. 7, pp. 2628-2639, 2012.
  13. S. Alamouti, "A simple transmit diversity technique for wireless communications," IEEE J. Sel. Areas in Commun., vol. 16, no. 8, pp. 1451-1458, 1998.
  14. H. Marshoud, V. M. Kapinas, G. K. Karagiannidis, and S. Muhaidat, "Nonorthogonal multiple access for visible light communications," IEEE Photonics Technol. Lett., Submitted, Jul. 2015.
  15. M. J. Hagh and M. R. Soleymani, "Raptor coding for non-orthogonal multiple access channels," IEEE ICC, pp. 1-6, Jun. 2011.
  16. S. Park and D. Cho, "Random linear network coding based on non-orthogonal multiple access in wireless networks," IEEE Commun. Lett., vol. 19, no. 7, pp. 1273-1276, Jul. 2015.
  17. S. Choudhury and J. D. Gibson, "Information transmission over fading channels," IEEE GLOBECOM, pp. 3316-3321, Nov. 2007.
  18. T. S. Rappaport, S. Shu, R. Mayzus, Z. Hang, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, vol. 1, pp. 335- 349, 2013.
  19. S. Rangan, T. S. Rappaport, and E. Erkip, "Millimeter-wave cellular wireless networks: potentials and challenges," in Proc. IEEE, vol. 102, no. 3, pp. 366-385, Mar. 2014.
  20. S. Sen, N. Santhapuri, R. R. Choudhury, and S. Nelakuditi, "Successive interference cancellation: a back-of-the-envelope perspective," in Proc. 9th ACM SIGCOMM Workshop on Hot Topics in Networks, pp. 1-6, Oct. 2010.
  21. N. I. Miridakis and D. D. Vergados, "A survey on the successive interference cancellation performance for single-antenna and multiple-antenna OFDM systems," IEEE Commun. Surveys & Tuts., vol. 15, no. 1, pp. 312-335, Feb. 2013.
  22. L. Dai, B. Wang, Y. Yuan, S. Han, and C.-L. I, and Z. Wang, "Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends," IEEE Commun. Mag., vol. 53, no. 9, pp. 74- 81, Sept. 2015.
  23. Q. Sun, S. Han, C.-L. I, and Z. Pan, "On the ergodic capacity of MIMO NOMA systems," IEEE Wirel. Commun. Lett., vol. 4, no. 4, pp. 405-408, Aug. 2015.


Supported by : 정보통신기술진흥센터