Flowering Patterns of Miscanthus Germplasms in Korea

국내 수집 억새 유전자원의 출수 특성

  • Received : 2015.10.05
  • Accepted : 2015.11.02
  • Published : 2015.12.31


Miscanthus has been considered as the most promising bioenergy crop for lignocellulosic biomass production. In Korea, M. sacchariflorus and M. sinensis can be found easily in all regions. It is a great advantage to utilize as important species with respect to genetic and cross-breeding programs materials for creation of novel hybrids. For successful breeding programs, it is important to precisely understand the variability of flowering traits among Miscanthus species as breeding parents materials. In this study, flowering traits were observed daily in 960 germplasms of two Miscanthus species (M. sacchariflorus and M. sinensis) for growing seasons over 2 years. The flowering process was divided into three stages. ST (sprouting time) was recorded when first leaf of the plant emerged on soil. FS1 (flowering stage 1) and FS2 (flowering stage 2) were recorded when flag leaf was firstly observed, and 1 cm of panicle was showing on at least one stem, respectively. For 2013 and 2014, the latest germplasms exerted flag leaf, i.e. September 30 (DOY of FS1 164.1) and September 4 (DOY of FS1 141.0) occurred M. sacchariflorus cv. Geodae 1 and M. sacchariflorus cv. Uram collected from Southern Korea (Jeollanam-do), while Miscanthus germplasms collected from northern Korea (Gyeonggi-do) which emerged the earliest flag leaf in July and August, significantly decreased DOY. For DOY from ST to FS2, M. sacchriflorus germplasms ranged from 140 to 190 days, and 110 to 170 days for 2013 and 2014. The highest frequency showed to 160 days for 2013, and 150 days for 2014. In M. sinensis germplasms, the highest frequency showed to 180 days for 2013, and 170 days for 2014. In the results of correlation between the day of years from ST to FS2 for 2013 and 2014, M. sacchriflorus and M. sinensis showed high coefficient of correlation (0.70 and 0.89). It can be supposed that flowering characteristics of Miscanthus are largely affected by the unique phenotypic characteristic of native habitat than environmental factors of the current planted site. This study for flowering traits of Miscanthus may provides an important information in order to expedite the introduction as breeding materials for creation of new hybrid.


bioenergy crop;emergence of flag leaf;flowering stage;miscanthus;transition of the plant meristem


  1. An, G. H., J. K. Kim, Y. H. Moon, Y. L. Cha, Y. M. Yoon, B. C. Koo, and K. G. Park. 2013. A new genotype of Miscanthus sacchariflorus Geodae-Uksae 1, identified by growth characteristics and a specific SCAR marker. Bioprocess Biosyst. Eng. 36 : 695-703.
  2. Arnoult, S., M. Quillet, and M. Brancourt-Hulmel. 2014. Miscanthus clones display large variation in floral biology and different environmental sensitivities useful for breeding. Bioenerg. Res. 7 : 430-441.
  3. Atkinson, C. J. 2009. Establishing perennial grass energy crops in the UK: A review of current propagation options for Miscanthus. Biomass Bioenergy 33 : 752-759.
  4. Caddel, J. L. and D. E. Weibel. 1971. Effect of photoperido and temperature on the development of sorghum. Agronomy J. 63 : 799-803.
  5. Clifton-Brown, J. C., I. Lewandowski, B. Andersson, G. Basch, D. G. Christian, J. B. Kjeldsen, U. Jorgensen, J. V. Mortensen, A. B. Riche, K. -U. Schwarz, K. Tayebi, and F. Teixeira. 2001. Performance of 15 Miscanthus genotypes at five sites in Europe. Agron. J. 93 : 1013-1019.
  6. Clifton-Brown, J. C. and I. Lewandowski. 2002. Screening Miscanthus genotypes in field trials to optimise biomass yield and quality in Southern Germany. European J. Agro. 16 : 97-110.
  7. Craufurd, P. Q., D. J. Flower, and J. M. Peacock. 1993. Effect of heat and drought stress on sorghum(Sorghum bicolor). 1. Panicle development and leaf appearance. Exp. Agri. 29 : 61-76.
  8. Craufurd, P. W. and A. M. Qi. 2001. Photothermal adaptation of sorghum (Sorghum bicolor) in Nigeria. Agri. Forest Meteorol. 108 : 199-211.
  9. Deuter, M. 2000. Breeding approaches to improvement of yield and quality in Miscanthus grown in Europe. In: Lewandowski, I. J. Clifton-Brown. European Miscanthus improvement Final Report. pp. 28-52.
  10. Ellis, R. H., A. Qi, P. Q. Craufurd, R. J. Summerfield, and E. H. Roberts. 1997. Effects of photoperiod, temperature and asynchrony between thermoperiod and photoperiod on development to panicle initiation in Sorghum. Annals Botany. 79 : 169-178.
  11. Engler, H. G. A. and K. A. E. Prantl. 1887. In: Nat. Pflanzenfam. 2(2) : 23.
  12. Greef, J. M., M. Deuter, C. Jung, and J. Schondelmaier. 1997. Genetic diversity of European Miscanthus species revealed by AFLP fingerprinting. Genet. Resour. Crop Ev. 44 : 185-197.
  13. Hammer, G. L., R. L. Vanderlip, G. Gibson, L. J. Wade, R. G. Henzell, D. R. Younger, J. Warren, and A. B. Dale. 1989. Genotype-by-environment interaction in grain-Sorghum. 2. Effects of temperature and photoperiod on ontogeny. Crop Sci. 29 : 376-384.
  14. Heaton, E. A., F. G. Dohleman, A. F. Miguez, J. A. Juvik, V. Lozovaya, J. Widholm, O. A. Zaborina, G. F. Mclsaac, M. B. David, T. B. Voigt, N. N. Boersma, and S. P. Long. 2010. Miscanthus. A promising biomass crop. Advance Bot. Res. 56 : 75-137.
  15. Jensen, E., K. Farrar, S. Thomas-Jones, A. Hastings, I. Donnison, and J. Clifton-Brown. 2011. Chaacterization of flowering time diversity in Miscantus species. GCB Bioenergy 3 : 387-400.
  16. Jensen, E., P. Robson, J. Norris, A. Cookson, K. Farrar, I. Donnison, and J. Clifton-Brown. 2013. Flowering induction in the bioenergy grass Miscanthus sacchariflorus is a quantitative short-day response, whilst delayed flowering under long days increases biomass accumulation. J. Exp. Botany 64(2) : 541-552.
  17. Karsai, I., P. Szucs, B. Koszegi, P. M. Hayes, A. Casas, Z. Bedo, and O. R. N. Veisz. 2008. Effects of photo and thermo cycles on flowering time in barley: a genetical phenomics approach. J. Exp. Botany 59 : 2707-2715.
  18. Lewandowski, I., J. C. Clifton-Brown, J. M. O. Scurlock, and W. Huisman. 2000. Miscanthus: European experience with a novel energy crop. Biomass Bioenerg. 19 : 209-227.
  19. Moon, Y. H., B. C. Koo, Y. H. Choi, S. H. Ahn S. T. Bark, Y. L. Cha, G. H. An, J. K. Kim, and S. J. Suh. 2010. Development of "Miscanthus" the promising bioenergy crop. Kor. J. Weed Sci. 30(4) : 330-339.
  20. Yan, J. W. Chen, F. Luo, H. Ma, A. Meng, X. Li, M. Zhu, S. Li, A. Zhou, W. Zhu, B. Han, S. Ge, J. Li, and T. Sang. 2012. Variability and adaptability of Miscanthus species evaluated for energy crop domestication. GCB Bioenergy 4 : 49-60.
  21. Yook, M. J., S. H. Lim, J. S. Song, J. W. Kim, C. J. Zhang, E. J. Lee, Y. Ibaragi, G. J. Lee, G. Nah, and D. S. Kim. 2014. Assessment of genetic diversity of Korean Miscanthus using morphological traits and SSR markers. Biomass Bioenerg. 66 : 81-92.

Cited by

  1. Effects of Delayed Harvesting of Miscanthus spp. Risen in the Previous Year on its Current Year’S Yield and Growth Characteristics vol.61, pp.3, 2016,


Grant : 억새 품종육성을 위한 특성구명 및 교배방법 개발

Supported by : 농촌진흥청