DOI QR코드

DOI QR Code

동적계획법을 이용한 효율적인 차량 추적 시스템에 관한 연구

A Study on Efficient Vehicle Tracking System using Dynamic Programming Method

  • 권희철 (가천대학교 산업경영공학과)
  • 투고 : 2015.10.20
  • 심사 : 2015.12.20
  • 발행 : 2015.12.28

초록

차량 등 객체를 추적하기 위한 많은 알고리즘들이 있지만 본 논문에서 제안하는 특징점 정합 알고리즘 분야는 지수 복잡도의 시간이 걸리는 작업이다. 더구나, 차량을 추적하기 위해 기존에 제안되었던 객체 추출 등 영상 전처리 알고리즘 또한 상당한 시간을 요구한다. 따라서 본 논문에서는 도로상에서 많은 차량들의 이동 궤적을 빠르고 효율적으로 추적하기 위한 방법을 2단계로 제안한다. 1단계로 객체 탐지가 아닌 번호판 영역을 먼저 탐지한 후 특징점을 추출하는 단계하고, 2단계로 특징점들을 정합하기 위한 비용산정식을 구한 후 동적계획법을 이용하여 효율적으로 차량을 추적할 수 있는 방법을 제안한다.

키워드

차량추적;특징점;정합알고리듬;동적계획법;번호판 탐지

과제정보

연구 과제 주관 기관 : 가천대학교

참고문헌

  1. S. Rhee, et al., Vehicle Tracking Using Image Processing Techniques, in Rough Sets and Current Trends in Computing. Vol. 3066, S. Tsumoto, et al., Eds., ed: Springer Berlin Heidelberg, pp. 671-678, 2004.
  2. L. Jin-Cyuan, et al., Image-based vehicle tracking and classification on the highway, in Green Circuits and Systems (ICGCS), International Conference on 2010, pp. 666-670, 2010.
  3. H. Chung-Lin and L. Wen-Chieh, A vision-based vehicle identification system, in Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on 2004, Vol.4, pp. 364-367. 2004.
  4. B. Coifman, D. Beymer, P. McLauchlan, and J. Malik, A real-time computer vision system for vehicle tracking and traffic surveillance, Transp. Res. Part C, Vol. 6, No. 4, pp. 271-288, 1998. https://doi.org/10.1016/S0968-090X(98)00019-9
  5. Jung-Soo Han, Intelligent Recommendation Processor Simulation using Association Relationship, The Journal of Digital Policy & Management, Vol. 11, No. 12, pp. 431-438, Dec. 2013.
  6. Z. Iftikhar, P. Premaratne & P. Vial, "Computer vision based traffic monitoring system for multi-track freeways," Intelligent Computing Methodologies(Lecture Notes in Computer Science), vol. 8589, pp. 339-349, 2014.
  7. Margrit Betke,, Esin Haritaoglu, Larry S. Davis, Real-time multiple vehicle detection and tracking from a moving vehicle, Machine Vision and Applications, Vol. 12, No. 2, pp. 69-83, 2000. https://doi.org/10.1007/s001380050126
  8. Yen-Lin Chen Bing-Fei Wu Chung-Jui Fan, Real-time vision-based multiple vehicle detection and tracking for nighttime traffic surveillance, IEEE, Vol. 58, No. 5, pp. 3352-3358, 2011.
  9. Jalpa Patel, Zalak Dobariya, A Survey on Traffic Monitoring System for Detection And Tracking Vehicles at Night Time, International Journal of Innovative Research in Technology, Vol. 1, No. 10, pp. 82-86, 2014.
  10. Saeed Samadi and Farhad Mohammad Kazemi, A Multi-Agent Vision-Based System for Vehicle Detection, World Applied Sciences Journal, Vol. 15, No. 12, pp. 1722-1732, 2011.
  11. Jung Sang Yoo, Hee Chul Kwon, Intelligent Inference Architecture in Parking Control System, Journal of the Korea Management Engineering Society, Vol. 13, No. 3, pp. 231-237, 2008.
  12. Jung Sang Yoo, Hee Chul Kwon, Fuzzy Inference System Architecture for Customer Satisfaction Service, Journal of The Korea Society of Computer and Information, Vol. 15, No. 1, pp. 219-226, Jan. 2010. https://doi.org/10.9708/jksci.2010.15.1.219
  13. Jung Sang Yoo, Hee Chul Kwon, A hybrid Inference System for Efficiently Controlling Reversible Lane, Journal of The Korea Society of Computer and Information, Vol. 17, No. 11, pp. 19-26, Nov. 2012.
  14. D. Koller, K. Daniilidis, H. Nagel, Model-based Object Tracking in Monocular Image Sequences of Road Traffic Scenes. International Journal of Computer Vision, Vol. 10, pp. 257-281, 1993. https://doi.org/10.1007/BF01539538
  15. I. Sethi and R. Jain, Finding Trajectories of Feature Points in a Monocular Image Sequence, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 9, No.1, pp. 56-73, Jan. 1987.