Characterization of Dietary Energy in Swine Feed and Feed Ingredients: A Review of Recent Research Results

  • Velayudhan, D.E. ;
  • Kim, I.H. ;
  • Nyachoti, C.M.
  • Published : 2015.01.01


Feed is single most expensive input in commercial pork production representing more than 50% of the total cost of production. The greatest proportion of this cost is associated with the energy component, thus making energy the most important dietary in terms of cost. For efficient pork production, it is imperative that diets are formulated to accurately match dietary energy supply to requirements for maintenance and productive functions. To achieve this goal, it is critical that the energy value of feeds is precisely determined and that the energy system that best meets the energy needs of a pig is used. Therefore, the present review focuses on dietary supply and needs for pigs and the available energy systems for formulating swine diets with particular emphasis on the net energy system. In addition to providing a more accurate estimate of the energy available to the animal in an ingredient and the subsequent diet, diets formulated using the this system are typically lower in crude protein, which leads to additional benefits in terms of reduced nitrogen excretion and consequent environmental pollution. Furthermore, using the net energy system may reduce diet cost as it allows for increased use of feedstuffs containing fibre in place of feedstuffs containing starch. A brief review of the use of distiller dried grains with solubles in swine diets as an energy source is included.


Dietary Energy;Net Energy;Measurement;Distiller Dried Grains with Solubles;Pigs


  1. Boisen, S. and M. W. A. Verstegen. 2000. Developments in the measurement of the energy content of feeds and energy utilization in animals. In: Feed Evaluation: Principles and Practice (Eds. P. J. Moughan, M. W. A. Verstegen, and M. I. Visser-Reyneveld). Wageningen Press, Wageningen, The Netherlands. pp. 57-75.
  2. Brafield, A. E. and M. J. Llewellyn. 1982. Animal Energetics. Blackie, Glasgow, UK.
  3. Chabeauti, E., J. Noblet, and B. Carre. 1991. Digestion of plant cell walls from four different sources in growing pigs. Anim. Feed Sci. Technol. 32:207-213.
  4. Brouwer, E. 1965. Report of subcommittee on constants and factors. In: Proceedings of the 3rd EAAP Symposium on Energy Metabolism. Troonn Publ. 11. Academic Press, London, UK. p. 441-443.
  5. Burrin, D. G. 2001. Nutrient requirements and metabolism. In:Biology of the Domestic Pig (Eds. W. G. Pond and H. J. Mersmann). Cornell University Press, Ithaca, NY, USA. pp. 309-389.
  6. Campbell, R. G. 1988. Nutritional constraints to lean tissue accretion in farm animals. Nutr. Res. Rev. 1:233-253.
  7. Chandramoni, C. M. Tiwari, S. B. Jadhao, and M. Y. Khan. 1999. Fasting heat production of Muzaffarnagari sheep. Small Rumin. Res. 36:43-47.
  8. Boisen, S. 2007. New concept for practical feed evaluation systems. DJF Animal Science No. 79. Research Centre Foulum, Denmark.
  9. Boisen, S. and M. W. A. Verstegen. 1998. Evaluation of feedstuffs and pig diets. Energy or nutrient-based evaluation systems? I. Limitations of present energy evaluation systems. Acta Agric. Scand. Sect. A Anim. Sci. 48:86-94.
  10. Armsby, H. P. 1917. The Nutrition of Farm Animals. MacMillan, New York, NY, USA.
  11. Ayoade, D. 2011. Net Energy of Wheat-corn Distillers Dried Grains with Solubles for Growing Pigs as Determined by the Comparative Slaughter, Indirect Calorimetry, and Chemical Composition Methods. M.Sc. thesis, University of Manitoba, Winnipeg, MB, Canada.
  12. Ayoade, D. I., E. Kiarie, M. A. Trinidade Neto, and C. M. Nyachoti. 2012. Net energy of diets containing wheat-corn distillers dried grains with solubles as determined by indirect calorimetry, comparative slaughter, and chemical composition methods. J. Anim. Sci. 90:4373-4379.
  13. Bach Knudsen, K. E. 2001. The nutritional significance of "dietary fiber" analysis. Anim. Feed Sci. Technol. 90:3-20.
  14. Baldwin, R. L. and A. C. Bywater. 1984. Nutritional energetics of animals. Annu. Rev. Nutr. 4:101-114.
  15. Bach Knudsen, K. E. and H. Jorgensen. 2001. Intestinal degradation of dietary carbohydrates-from birth to maturity in Digestive Physiology in Pigs. Proc. 8th Intl. Symp. Digestive Physiology of Pigs (Eds. J. E. Lindberg and B. Ogle), Barcelona, Spain. CABI Publishing, Wallingford, UK. p. 109-120.
  16. Bakker, G. C. M. 1996. Interaction between Carbohydrates and Fat in Pigs. Ph.D. Thesis. Wageningen University, The Netherlands.
  17. Baldwin, R. L. 1995. Energy requirements for maintenance and production. In: Modeling Ruminant Digestion and Metabolism (Ed. R. L. Baldwin). Chapman and Hall, London, UK. p. 148-188.
  18. Birkett, S. and K. de Lange. 2001. A computational frame for a nutrient flow representation of energy utilization by growing monogastric animals. Br. J. Nutr. 86:661-674.
  19. Black, A., E. M. Tilmont, D. J. Baer, W. V. Rumpler, D. K. Ingram, G. S. Roth, and M. A. Lane. 2001. Accuracy and precision of dual-energy X-ray absorptiometry for body composition measurements in rhesus monkeys. J. Med. Primatol. 30:94-99.
  20. Black, J. L. 1974. Manipulation of body composition through nutrition. Proceedings of the Australian Society of Animal Production, Sydney, Australia. 10:211-218.
  21. Blakemore, C. and S. Jennett. 2002. The Oxford Companion to the Body. Oxford University Press, Oxford, UK.
  22. Blaxter, K. 1989. Energy Metabolism in Animals and Man. Cambridge, Univ. Press, Cambridge, UK.
  23. Adeola, O. 2001. Digestion and balance techniques in pigs. In:Swine Nutrition (Eds. A. J. Lewis and L. L. Southern). 2nd ed. CRC Press, Washington, DC, USA. pp. 903-916.
  24. ARC. 1981. The Nutrient Requirements of Pigs: Technical Review. Rev. ed. Commonwealth Agricultural Bureau, Slough, England.
  25. Blaxter, K. L. 1962. The fasting metabolism of adult wether sheep. Br. J. Nutr. 16:615-626.
  26. Wiesemuller, W., S. Poppe, and W. Hackl. 1988. The energy metabolism of swine at a feed level of live weight equilibrium. Arch. Tierernahr. 38:603-617.
  27. Blaxter, K. L. and A. W. Boyne. 1978. The estimation of the nutritive value of feeds as energy sources for ruminants and the derivation of feeding systems. J. Agric. Sci. 90:47-68.
  28. Walstra, P. 1980. Growth and Carcass Composition from Birth to Maturity in Relation to Feeding Level and Sex in Dutch Landrace Pigs. Ph.D. Thesis, Wageningen Agric. Univ., Wageningen, The Netherlands.
  29. Wenk, C., P. C. Colombani, J. van Milgen, and A. Lemme. 2000. Glossary: Terminology in animal and human energy metabolism. In Energy Metabolism in Animals. Proceeding of the 15th Symposium on Energy Metabolism in Animals (Eds. A. Chwalibog and K. Jakobsen). EAAP publication No. 103 Snekkersten, Denmark. Wageningen Pers, Wageningen, The Netherlands. pp. 409-421.
  30. Woyengo, T. A., B. A. Slominski, and R. O. Jones. 2010a. Growth performance and nutrient utilization of broiler chickens fed diets supplemented with phytase alone or in combination with citric acid and multicarbohydrase. Poult. Sci. 89:2221-2229.
  31. Zhang, G. F., D. W. Liu, F. L. Wang, and D. F. Li. 2014. Estimation of the net energy requirements for maintenance in growing and finishing pigs. J. Anim. Sci. 92:2987-2995.
  32. Tess, M. W., G. E. Dickerson, J. A. Nienaber, J. T. Yen, and C. L. Ferrell.1984. Energy costs of protein and fat deposition in pigs fed ad libitum. J. Anim. Sci. 58:111-122.
  33. Thacker, P. A., G. L. Campbell, and J. W. D. Groot-Wassink. 1988. The effect of beta-glucanase supplementation on the performance of pigs fed hulless barley. Nutr. Rep. Int. 38:91-99.
  34. Thorbek, G., A. Chwalibog, and S. Henckel. 1984. Nitrogen and energy metabolism in pigs of Danish Landrace from 20 to 120 kg live weight. Norm for protein and energy requirements for maintenance and growth. Beretning fra Statens Husdyrbrugsforsog, 563, Copenhagen, Denmark.
  35. van Milgen, J. and J. Noblet. 2003. Partitioning of energy intake to heat, protein, and fat in growing pigs. J. Anim. Sci. 81(E. Suppl. 2):E86-E93.
  36. Van Es, A. J. H. 1980. Feed evaluation, a survey. In: Proceedings of the Eight Symposium on Energy Metabolism Held at Churchill College, Cambridge (Ed. L. E. Mount). Butterworths, London, UK. pp. 85-94.
  37. Van Es, A. J. H. and H. A. Boekholt. 1987. Energy metabolism of farm animals. In: Energy Metabolism in Farm Animals (Eds. M. W. A. Verstegen, and A. M. Henken). Martinus Nijhoff Publishers, Dordrecht, Netherlands. pp. 3-19.
  38. van Heugten, E., T. C. Schell, and J. R. Jones. 2000. Principles of balancing swine rations. Pork Industry Handbook Fact Sheet, No. 7, Purdue University. pp. 1-8.
  39. van Milgen, J., J. Noblet, and S. Dubois. 2001. Energetic efficiency of starch, protein and lipid utilization in growing pigs. J. Nutr. 131:1309-1318.
  40. van Milgen, J., N. Quiniou, and J. Noblet. 2000. Modelling the relation between energy intake and protein and lipid deposition in growing pigs. Anim. Sci. 71:119-130.
  41. Velayudhan, D. E. and C. M. Nyachoti. 2014. Validation of net energy system of feed formulation in growing pigs fed barley based diets with alternative feed ingredients. J. Anim. Sci. 92(E-Suppl. 2):645.
  42. Velayudhan, D. E., J. M. Heo, and C.M. Nyachoti. 2013b. Effect of enzyme supplementation on the net energy content of dry extruded-expelled soybean meal fed to growing pigs. J. Anim. Sci. 91(Suppl. 2):411-412.
  43. Velayudhan, D. E., J. M. Heo, and C. M. Nyachoti. 2013a. Net energy content of dry extruded-expelled soybean meal fed to growing pigs using indirect calorimetry. Page 187 in Energy and Protein Metabolism and Nutrition in Sustainable Animal Production - EAAP134. (Eds. J. W. Oltjen, E. Kebreab, and H. Lapierre). Wageningen Academic Publishers, Wageningen, The Netherlands.
  44. Verstegen, M. W. A. 1971. Influence of environmental temperature on energy metabolism of growing pigs housed individually and in groups. Meded. Landbhhogerch, Wageningen, The Netherlands.
  45. Rijnen, M. M. J. A., J. Doorenbos, J. Mallo, and L. A. den Hartog. 2004. The application of the net energy system for swine. Proceedings of the 25th Western Nutrition Conference. Saskatoon, SK, Canada.
  46. Verstegen, M. W. A. 2001. Developments towards net energy systems in feeds and animals. Proceedings of the 22nd Western Nutrition Conference. Saskatoon, SK, Canada.
  47. Pettigrew, J. E., G. L. Allee, J. F. Patience, H. H. Stein, D. Y. Kil, D. B. Beaulieu, and R. H. Hinson. 2009. North American swine energy system: Introduction. J. Anim. Sci. 87 (E-Suppl. 3): 97 (Abstr.)
  48. Pond, W. G., D. C. Church, and K. R. Pond. 1995. Energy metabolism. In: Basic Animal Nutrition and Feeding. Wiley, New York, USA. p. 149-166.
  49. Rijnen, M. M. J. A., M. W. A. Verstegen, M. J. W. Heetkamp, and J. W. Schrama. 2003. Effects of two different dietary fermentable carbohydrates on activity and heat production in group-housed growing pigs. J. Anim. Sci. 81:1210-1219.
  50. Rojas, O. J. and H. H. Stein. 2013. Concentration of digestible, metabolizable, and net energy and digestibility of energy and nutrients in fermented soybean meal, conventional soybean meal, and fish meal fed to weanling pigs. J. Anim. Sci. 91:4397-4405.
  51. Salas, C., R. D. Ekmay, J. England, S. Cerrate, and C. N. Coon. 2012. Determination of chicken body composition measured by dual energy x-ray absorptiometry. Int. J. Poult. Sci. 11: 462-468.
  52. Sauvant, D., J. M. Perez, and G. Tran. 2004. Tables of Composition and Nutritional Value of Feed Materials: Pig, Poultry, Sheep, Goats, Rabbits, Hhorses, Fish. Wageningen Academic Publishers, Wageningen, The Netherlands and INRA, ed. France.
  53. Schiemann, R., K. Nehring, L. Hoffmann, W. Jentsch, and A. Chudy. 1972. Energetische Futterbevertung und Energienormen. [Energetic assessment of feeds.]. VEB Deutscher Landwirtschatsverlag, Berlin, Germany.
  54. Stewart, L. L. 2005. Net Energy Values of Soybean Hulls and Wheat Middlings Fed to Growing and Finishing Pigs. MSc. Diss. South Dakota State Univ., Urbana, IL, USA.
  55. Shi, X. S. and J. Noblet. 1993. Digestible and metabolizable energy values of ten feed ingredients in growing pigs fed ad libitum and sows fed at maintenance level; comparative contribution of the hindgut. Anim. Feed Sci. Technol. 42:223-236.
  56. Stein, H. H. and G. C. Shurson. 2009. Board-invited review: The use and application of distillers dried grains with solubles in swine diets. J. Anim. Sci. 87:1292-1303.
  57. Stewart, L. L., D. Y. Kil, R. B. Hinson A. D. Beaulieu G. L. Allee J. F. Patience J. E. Pettigrew, and H. H. Stein. 2013. Effects of dietary soybean hulls and wheat middlings on body composition, nutrient and energy retention, and the net energy of diets and ingredients fed to growing and finishing pigs. J. Anim. Sci. 91:2756-2765.
  58. Sullivan, Z., M. Honeyman, L. Gibson, J. McGuire, and M. Nelson. 2005. Feeding small grains to swine. Iowa State University, University Extension, PM1994 2005.
  59. Tess, M. W. 1981. Simulated Effects of Genetic change upon Life-cycle Production Efficiency in Swine and the Effect of Body Composition upon Energy Utilization in the Growing Pig. Ph.D. Thi. Univ. of Nebraska, Lincoln, NE, USA.
  60. Noblet J., X. S. Shi, and S. Dubois. 1994b. Effect of body weight on net energy value of feeds for growing pigs. J. Anim. Sci. 72:648-657.
  61. Noblet, J. 2000. Digestive and metabolic utilization of feed energy in swine: Application to energy evaluation systems. J. Appl. Anim. Res. 17:113-132.
  62. Noblet, J. 2007. Net energy evaluation of feeds and determination of net energy requirements for pigs. R. Bras. Zootec. 36 (Suppl.):277-284.
  63. Noblet, J., 2006. Recent advances in energy evaluation of feeds for pigs. In: Recent advances in Animal Nutrition 2005 (Eds. P. C. Garnsworthy and J. Wiseman). Nottingham University Press, Nottingham, UK. pp. 1-26.
  64. Noblet, J. and Y. Henry. 1993. Energy evaluation systems for pig diets: A review. Livest. Prod. Sci. 36:121-141.
  65. Noblet, J. and J. M. Perez. 1993. Prediction of digestibility of nutrients and energy values of pig diets from chemical analysis. J. Anim. Sci. 71:3389-3398.
  66. Noblet, J. and J. van Milgen. 2004. Energy value of pig feeds: Effect of pig body weight and energy evaluation system. J. Anim. Sci. 82(E. Suppl.):E229-E238.
  67. Noblet, J. and X. S. Shi. 1994. Effect of body weight on digestive utilization of energy and nutrients of ingredients and diets in pigs. Livest. Prod. Sci. 37:323-338.
  68. Noblet, J., C. Karege, S. Dubois, and J. van Milgen. 1999. Metabolic utilization of energy and maintenance requirements in growing pigs: effects of sex and genotype. J. Anim. Sci. 77:1208-1216.
  69. Noblet, J., H. Fortune, C. Dupire, and S. Dubois. 1993. Digestible, metabolizable and net energy values of 13 feedstuffs for growing pigs: effect of energy system. Anim. Feed Sci. Technol. 42:131-149.
  70. Noblet, J., L. Le Bellego, J. van Milgen, and S. Dubois. 2001. Effects of reduced dietary protein level and fat addition on heat production and N and energy balance in growing pigs. Anim. Res. 50:227-238.
  71. NRC. 1998. Nutrient Requirements of Swine. 10th ed. Natl. Acad. Press, Washington, DC, USA.
  72. NRC. 2012. Nutrient Requirements of Swine. 11th Rev. ed. Natl. Acad. Press, Washington, DC, USA.
  73. Patience, J. F, A. D. Beaulieu, R. T. Zijlstra, T. Oresanya, and R. Mohr. 2004. Energy systems for swine: A critical review of DE, ME and NE. Proc. Midwest Swine Nutrition Conference. Indianapolis, IN, USA.
  74. Patience, J. F. 2005. Netting pig profit with net energy. National Hog Farmer, November 15, 2005.
  75. Kil, D. Y., F. Ji, L. L. Stewart, R. B. Hinson, A. D. Beaulieu, G. L. Allee, J. F. Patience, J. E. Pettigrew, and H. H. Stein. 2011. Net energy of soybean oil and choice white grease in diets fed to growing and finishing pigs. J. Anim. Sci. 89:448-459.
  76. Patience, J. F. and A. D. Beaulieu. 2005. The merits, benefits, and challenges of adopting the net energy system in a North American context. Minnesota Nutrition Conf., Minneapolis, MN, USA.
  77. Payne, R. L. and R. T. Zijlstra. 2007. A guide to application of net energy in swine feed formulation. Advances in Pork Production 18:159-165.
  78. Pettigrew, J. 2009. Effective nutrient utilization in the nonruminant animal. in Proc. 30th Western Nutr. Conf., Winnipeg, MB, Canada. pp. 47-54.
  79. Kim, J. C., B. P. Mullan, D. J. Hampson, M. M. J. A. Rijnen, J. R. Pluske. 2007. The digestible energy and net energy content of two varieties of processed rice in pigs of different body weight. Anim. Feed Sci. Technol. 134:316-325.
  80. Kleiber, M. 1975. The Fire of Life. 2nd ed. R. E. Krieger, New York, USA.
  81. Kolstad K., U. T. Brenoe, and O. Vangen. 2002. Genetic differences in energy partitioning in growing pigs. Acta Agric. Scand. Section A Anim. Sci. 52:213-220.
  82. Kolstad, K. and O. Vangen. 1996. Breed differences in maintenance requirements of growing pigs when accounting for changes in body composition. Livest. Prod. Sci. 47:23-32.
  83. Le Bellego, L., J. van Milgen, S. Dubois, and J. Noblet. 2001. Energy utilization of low-protein diets in growing pigs. J. Anim. Sci. 79:1259-1271.
  84. Le Goff, G. and J. Noblet. 2001. Comparative total tract digestibility of dietary energy and nutrients in growing pigs and adult sows. J. Anim. Sci. 79:2418-2427.
  85. Le Goff, G., S. Dubois, J. van Milgen, and J. Noblet. 2002. Influence of dietary fiber level on digestive and metabolic utilization of energy in growing and finishing pigs. Anim. Res. 51:245-259.
  86. Myer, R.O. and J. H. Brendemuhl. 2013. 4H Project Guide: Swine Nutrition. EDIS Publication System. Accessed October 24, 2013.
  87. Liu, D. W., N. W. Jaworski, G. F. Zhang, Z. C. Li, D. F. Li, and F. L. Wang. 2014. Effect of experimental methodology on fasting heat production and the net energy content of corn and soybean meal fed to growing pigs. Arch. Anim. Nutr. 68:281-295.
  88. Milligan, L. P. and M. Summers. 1986. The biological basis of maintenance and its relevance to assessing responses to nutrients. Proc. Nutr. Soc. 45:185-193.
  89. Morgan, D. J., D. J. A. Cole, and D. Lewis. 1975. Energy value in pig nutrition. 1. The relationship between digestible energy, metabolizable energy and total digestible nutrient values of a range of feedstuffs. J. Agric. Sci. 84:7-17.
  90. Noblet, J., H. Fortune, X. S. Shi, and S. Dubois. 1994a. Prediction of net energy value of feeds for growing pigs. J. Anim. Sci. 72:344-354.
  91. Kil, D. Y., B. G. Kim, and H. H. Stein. 2013. Feed energy evaluation for growing pigs. Asian Australas. J. Anim. Sci. 26:1205-1217.
  92. Kil, D. Y., F. Ji, L. L. Stewart, R. B. Hinson, A. D. Beaulieu, G. L. Allee, J. F. Patience, J. E. Pettigrew, and H. H. Stein. 2013. Effects of dietary soybean oil on pig growth performance, retention of protein, lipids, and energy, and on the net energy of corn in diets fed to growing or finishing pigs. J. Anim. Sci. 91:3283-3290.
  93. Chiba, L. I. 2000. Feeding systems for pigs. In: Feeding Systems and Feed Evaluation Models (Eds. M. K. Theodorou and J. France). CABI Publishing, Wallinford, UK. pp. 181-209.
  94. Christensen, K., A. Chwalibog, S. Henckel, and G. Thorbek. 1988. Heat production in growing pigs calculated according to the RQ and CN methods. Comp. Biochem. Physiol. A Physiol. 91:463-468.
  95. Cozannet, P., A. Preynat, and J. Noblet. 2012. Digestible energy values of feed ingredients with or without addition of enzymes complex in growing pigs. J. Anim. Sci. 90:209-211.
  96. Close, W. H. 1996. Modelling the growing pig: Predicting nutrient needs and responses. In: Biotechnology in the Feed Industry (Eds. T. P. Lyons and K. A. Jacques). The living gut: Bridging the gap between nutrition and performance. Proc. of Alltech's 12th Annual Symposium. Nottingham University Press, Nottingham, UK. pp. 289-297.
  97. Cole, M. 1995. Energy systems in pig feed formulation. Feed-Compounder 15:18-19.
  98. Cowieson, A. J., and V. Ravindran. 2008. Effect of exogenous enzymes in maize-based diets varying in nutrient density for young broilers: Growth performance and digestibility of energy, minerals and amino acids. Br. Poult. Sci. 49:37-44.
  99. De Jong, J. A., J. M. DeRouchey, M. D. Tokach, S. S. Dritz, and R. D. Goodband. 2014. Effects of dietary wheat middlings, corn dried distillers grains with solubles, and net energy formulation on nursery pig performance. J. Anim. Sci. 92:3471-3481.
  100. de Lange, C. F. M. and S. H. Birkett. 2005. Characterization of useful energy content in swine and poultry feed ingredients. Can. J. Anim. Sci. 85:269-280.
  101. de Lange, K., J. van Milgen, J. Noblet, S. Dubois, and S. Birkett. 2006. Previous feeding level influences plateau heat production following a 24 h fast in growing pigs. Br. J. Nutr. 95:1082-1087.
  102. Emmans, G. C. 1999. Energy flows. In: A Quantitative Biology of the Pig (Ed I. Kyriazakis). CABI International, New York, NY, USA. pp. 363-377.
  103. Ewan, R. C. 1989. Predicting the energy utilization of diets and feed ingredients by pigs. In: Energy Metabolism of Farm Animals (Eds. Y. van der Honing and W. H. Close). Proceedings of the 11th Symposium, Lunteren, The Netherlands. pp. 215-218.
  104. Heo, J. M., D. Ayoade, and C. M. Nyachoti. 2014. Determination of the net energy content of canola meal from Brassica napus yellow and Brassica juncea yellow fed to growing pigs using indirect calorimetry. Anim. Sci. J. 85:751-756.
  105. Just, A. 1982. The net energy value of balanced diets for growing pigs. Livest. Prod. Sci. 8:541-555.
  106. Kiarie, E. and C. M. Nyachoti. 2010. Effect of genotype on heat production and the net energy (NE) value of a corn-soybean meal-based diet. J. Anim. Sci. 88(E-Suppl. 3):50.
  107. Kil, D. Y. 2008. Digestibility and Energetic Utilization of Lipids by Pigs. Ph.D. Thesis, University of Illinois, Urbana, IL, USA.

Cited by

  1. Economic Analysis of Vaccination Strategies for PRRS Control vol.10, pp.12, 2015,
  2. Effect of vaccination with a modified live porcine reproductive and respiratory syndrome virus vaccine on growth performance in fattening pigs under field conditions vol.78, pp.9, 2016,
  3. Net energy of hemp hulls and processed hemp hull products fed to growing pigs and the comparison of net energy determined via indirect calorimetry and calculated from prediction equations1 vol.95, pp.6, 2017,
  4. Low-tannin white sorghum contains more digestible and metabolisable energy than high-tannin red sorghum if fed to growing pigs vol.59, pp.3, 2019,
  5. Effect of supplementation of sodium stearoyl-2-lactylate as fat emulsifier in low-density diet on growth performance, backfat thickness, lean muscle percentage, and meat quality in finishing pigs vol.99, pp.1, 2019,


Grant : "친환경, 안전축산물 생산을 위한 동물자원 전문인력 양성사업팀"