DOI QR코드

DOI QR Code

Investigation of vibration and stability of cracked columns under axial load

  • Ghaderi, Masoud (Department of Civil Engineering, Ghermi Branch, Islamic Azad University) ;
  • Ghaffarzadeh, Hosein (Department of Structural Engineering, Faculty of Civil Engineering, University of Tabriz) ;
  • Maleki, Vahid A. (Department of Mechanical Engineering, University of Tabriz)
  • Received : 2014.04.22
  • Accepted : 2015.07.07
  • Published : 2015.12.25

Abstract

In this paper, an analytical method is proposed to study the effect of crack and axial load on vibration behavior and stability of the cracked columns. Using the local flexibility model, the crack has been simulated by a torsional spring with connecting two segments of column in crack location. By solving governing eigenvalue equation, the effects of crack parameters and axial load on the natural frequencies and buckling load as well as buckling load are investigated. The results show that the presents of crack cause to reduction in natural frequencies and buckling load whereas this reduction is affected by the location and depth of the crack. Furthermore, the tensile and compressive axial load increase and decrease the natural frequencies, respectively. In addition, as the compression load approaches to certain value, the fundamental natural frequency reaches zero and instability occurs. The accuracy of the model is validated through the experimental data reported in the literature.

References

  1. Krauberger, N., Bratina, S., Saje, M., Schnabl, S. and Planinc, I. (2012), "Inelastic buckling load of a locally weakened reinforced concrete column", Eng. Struct., 34, 278-288. https://doi.org/10.1016/j.engstruct.2011.09.006
  2. Nikpour, K. (1990), "Buckling of cracked composite columns", Int. J. Solid. Struct., 26(12), 71-86.
  3. Okamura, H., Liu, H.W., Chu, C.S. and Liebowitz, H. (1969), "A cracked column under compression", Eng. Fracture Mech., 1(3), 547-564. https://doi.org/10.1016/0013-7944(69)90011-3
  4. Patnaik, S.N. and Hopkins, D.A. (2004), Strength of Materials, New York, Elsevier.
  5. Rahai, A.R. and Kazemi, S. (2008), "Buckling analysis of non-prismatic columns based on modified vibration modes", Comm. Nonlin. Sci. Numer. Simulation, 13(8), 1721-1735. https://doi.org/10.1016/j.cnsns.2006.09.009
  6. Ranjbaran, A., Hashemi, S. and Ghaffarian, A.R. (2008), "A new approach for buckling and vibration analysis of cracked column", Int. J. Eng. Trans. A: Basic., 21(3), 225-230.
  7. Sakar, G., O zturk, H. and Sabuncu, M. (2012), "Dynamic stability of multi-span frames subjected to periodic loading", J. Constr. Steel Res., 70, 65-70. https://doi.org/10.1016/j.jcsr.2011.10.009
  8. Tada, H., Paris, P. and Irwin, G.R. (2004), The Stress Analysis of Cracks Handbook, New York, ASME Press.
  9. Toygar, M.E., Kiral, Z., Sayman, O., Arman, Y. and O zen, M. (2012), "Effect of interface crack on lateral buckling behavior and free vibration response of a sandwich composite beam", J. Compos. Mater., 1, 1-9.
  10. Vadillo, G., Loya, J.A. and Fernandez-Saez, J. (2012), "First order solutions for the buckling loads of weakened Timoshenko columns", Comput. Math. Appl., 64, 2395-2407. https://doi.org/10.1016/j.camwa.2012.05.009
  11. Vakil Baghmisheh, M.T., Peimani M., Homayoun Sadeghi, M., Ettefaghb, M.M. and Fakheri Tabrizi, A. (2012), "A hybrid particle swarm-Nelder-Mead optimization method for crack detection in cantilever beams", Appl. Soft Comput., 12, 2217-2226. https://doi.org/10.1016/j.asoc.2012.03.030
  12. Yan, G., De Stefano, A., Matta, E. and Feng, R. (2013), "A novel approach to detecting breathing-fatigue cracks based on dynamic characteristics", J. Sound Vib., 332(2), 407-422. https://doi.org/10.1016/j.jsv.2012.09.008
  13. Yazdchi, K. and Gowhari Anaraki, A.R. (2008), "Carrying capacity of edge-cracked columns under concentric vertical loads", Acta Mechanica, 198, 1-19. https://doi.org/10.1007/s00707-007-0523-z
  14. Anifantis, N. and Dimaragonas, A. (1981), "Stability of columns with a single crack subject to follower and vertical loads", Int. J. Solid. Struct., 19(4), 281-291. https://doi.org/10.1016/0020-7683(83)90027-6
  15. Binici, B. (2005), "Vibration of beams with multiple open cracks subjected to axial force", J. Sound Vib., 287(1), 277-295. https://doi.org/10.1016/j.jsv.2004.11.010
  16. Butcher, E.A. (2010), "Natural frequencies and critical loads of beams and columns with damaged boundaries using Chebyshev polynomials", Int. J. Eng. Sci., 48(10), 862-873. https://doi.org/10.1016/j.ijengsci.2010.05.008
  17. Caddemi, S. and Calio, I. (2012), "The influence of the axial force on the vibration of the Euler-Bernoulli beam with an arbitrary number of cracks", Arch. Appl. Mech., 82(6), 827-839. https://doi.org/10.1007/s00419-011-0595-z
  18. Chen, D.L., Wang, W.T. and Liu, F. (2011), "Vibration analysis method of cracked beam based on the principle of energy", Appl. Mech. Mater., 94, 1633-1637.
  19. Gurel, M.A. and Kisa, M. (2005), "Buckling of slender prismatic columns with a single edge crack under concentric vertical loads", Turkish J. Eng. Envir. Sci., 29(3), 185-193.
  20. Jena, P.K., Thatoi, D.N., Nanda, J. and Parhi, D.R.K. (2012), "Effect of damage parameters on vibration signatures of a cantilever beam", Procedia Eng., 38, 3318-3330. https://doi.org/10.1016/j.proeng.2012.06.384
  21. Jiki, P.N. (2007), "Buckling analysis of pre-cracked beam-columns by Liapunov's second method", Eur. J. Mech. A Solid., 26(3), 503-518. https://doi.org/10.1016/j.euromechsol.2006.07.007
  22. Jiki, P.N. (2011), "A Finite element java program for stability analysis of pre-cracked beam-columns", Eur. J. Appl. Sci., 3(4), 162-168.
  23. Jiki, P.N. and Karim, U. (2011), "A Numerical model for stability of fre-cracked beam-columns", 1st International Technology, Education and Environment Conference.
  24. Kim, S.M. and Cho, Y.H. (2006), "Vibration and dynamic buckling of shear beam-columns on elastic foundation under moving harmonic loads", Int. J. Solid. Struct., 43(3), 393-412. https://doi.org/10.1016/j.ijsolstr.2005.06.025
  25. Kisa, M. (2011), "Vibration and stability of multi-cracked beams under compressive axial loading", Int. J. Phys. Sci., 6(11), 2681-2696.