Effects of Aspect Ratio on Diffusive-Convection During Physical Vapor Transport of Hg2Cl2 with Impurity of NO

염화제일수은과 일산화질소의 물리적 승화법 공정에서의 확산-대류에 미치는 에스펙트 비율의 영향

  • Kim, Geug-Tae (Department of Advanced Materials and Chemical Engineering, Hannam University)
  • 김극태 (한남대학교 화공신소재공학과)
  • Received : 2015.10.14
  • Accepted : 2015.11.10
  • Published : 2015.12.10


This study investigates the effects of aspect ratio (transport length-to-width) on diffusive-convection for physical vapor transport processes of $Hg_2Cl_2-NO$ system. For a system with the temperature difference of 20 K between an interface at the source material region and growing crystal interface, the linear temperature profiles at walls, the total molar fluxes at Ar = 2 are much greater than Ar = 5 as well as the corresponding nonuniformities in interfacial distributions due to the effect of convection. The maximum total molar flux at the gravitational acceleration of 1 $g_0$ is greater twice than at the level of 0.1 $g_0$, where g0 denotes the gravitational acceleration on earth. With increasing aspect ratio from 2 to 5, a diffusive-convection mode is transited into the diffusion mode, and then the strength of diffusion is predominant over the strength of diffusive-convection.


aspect ratio;physical vapor transport


Supported by : Hannam University


  1. N. B. Singh, M. Gottlieb, G. B. Brandt, A. M. Stewart, R. Mazelsky, and M. E. Glicksman, Growth and characterization of mercurous halide crystals: mercurous bromide system, J. Crystal Growth, 137, 155-160 (1994).
  2. N. B. Singh, R. H. Hopkins, R. Mazelsky, and J. J. Conroy, Purification and growth of mercurous chloride single crystals, J. Crystal Growth, 75, 173-180 (1986).
  3. S. J. Yosim and S. W. Mayer, The mercury-mercuric chloride system, J. Phys. Chem., 64, 909-911 (1960).
  4. T. Yamaguchi, K. Ohtomo, S. Sato, N. Ohtani, M. Katsuno, T. Fujimoto, S. Sato, H. Tsuge, and T. Yano, Surface morphology and step instability on the (0001)C facet of physical vapor transport-grown 4H-SiC single crystal boules, J. Crystal Growth, 431, 24-31 (2015).
  5. C. Ohshige, T. Takahashi, N. Ohtani, M. Katsuno, T. Fujimoto, S. Sato, H. Tsuge, T. Yano, H. Matsuhata, and M. Kitabatake, Defect formation during the initial stage of physical vapor transport growth of 4H-SiC in the (1120) direction, J. Crystal Growth, 408, 1-6 (2014).
  6. J. G. Kim, J. H. Jeong, Y. Kim, Y. Makarov, and D. J. Choi, Evaluation of the change in properties caused by axial and radial Temperature gradients in silicon carbide crystal growth using the physical vapor transport method, Acta. Materialia, 77, 54-59 (2014).
  7. Y. Shi, J. Yang, H. Liu, P. Dai, B. Liu, Z. Jin, and G. Qiao, Fabrication and mechanism of 6H-type silicon carbide whiskers by physical vapor transport technique, J. Crystal Growth, 349, 68-74 (2012).
  8. M. A. Fanton, Q. Li, A. Y. Polyakov, and M. Skowronski, Electrical properties and deep levels spectra of bulk SiC crystals grown by hybrid physical-chemical vapor transport method, J. Crystal Growth, 300, 314-318 (2007).
  9. K. Semmelroth, M. Krieger, G. Pensl, H. Nagasawa, R. Pusche, M. Hundhausen, L. Ley, M. Nerding, and H. P. Strunk, Growth of cubic SiC single crystals by the physical vapor transport technique, J. Crystal Growth, 308, 241-246 (2007).
  10. E. R. Letts, J. S. Speck, and S. Nakamura, Effect of indium on the physical vapor transport growth of AIN, J. Crystal Growth, 311, 1060-1064 (2009).
  11. J. T. Mullins, F. Dierre, and B. K. Tanner, X-ray diffraction imaging of ZnTe Crystals grown by the multi-tube physical vapour transport technique, J. Crystal Growth, 431, 61-68 (2015).
  12. L. Hongtao, S. Wenbin, M. Jiahua, and Z. Feng, Purification of $Cd_{0.9}Zn_{0.1}Te$ by physical vapor transport method, Mater. Lett., 59, 3837-3840 (2005).
  13. H. Cai, W. Wang, P. Liu, G. Wang, A. Liu, Z. He, Z. Cheng, S. Zhang, and M. Xia, Enhanced synthesis of Sn nanowires with aid of Se atom via physical vapor transport, J. Crystal Growth, 420, 42-46 (2015).
  14. S. Jo, S. Suzuki, and M. Yoshimura, Effect of solid-state polymerization on crystal morphology of a type of polydiacetylene single crystal obtained by physical vapor transport technique," Thin Solid Films, 554, 154-157 (2014).
  15. S. Collins, S. Vatavu, V. Evani, M. Khan, S. Bakhshi, V. Palekis, C. Rotaru, and C. Ferekides, Radiative recombination mechanisms in CdTe thin films deposited by elemental vapor transport, Thin Solid Films, 582, 139-145 (2015).
  16. S. Y. Hung, R. L. Kao, K. Y. Lin, C. C. Yang, K. S. Lin, Y. C. Chao, J. S. Wang, J. L. Shen, and K. C. Chiu, Characterization of facial and meridional $Alq_3$ thin films fabricated from physical vapor transport at high substrate temperatures, Mater. Chem. Phys., 154, 100-106 (2015).
  17. A. Choubey, P. Veeramani, A. T. G. Pym, J. T. Mullins, P. J. Sellin, A. W. Brinkman, I. Radley, A. Basu, and B. K. Tanner, Growth by the Multi-tube Physical Vapour Transport Method and Characterization of Bulk (Cd, Zn)Te, J. Crystal Growth, 352, 120-123 (2012).
  18. Y. Shi, J. F. Yang, H. Liu, P. Dai, B. Liu, Z. Jin, G. Qiao, and H. Li, Fabrication and Mechanism of 6H-type Silicon Carbide Whiskers by Physical Vapor Transport Technique, J. Crystal Growth, 349, 68-74 (2012).
  19. N. Zotov, S. Baumann, W. A. Meulenberg, and R. Vassen, La-Sr-Fe-Co Oxygen Transport Membranes on Metal Supports Deposited by Low Pressure Plasma Spraying-Physical Vapour Deposition, J. Membrane Sci., 442, 119-123 (2013).
  20. M. A. Fanton, Q. Li, A. Y. Polyakov, M. Skowronski, R. Cavalero, and R. Ray, Effects of Hydrogen on the Properties of SiC Crystals Grown by Physical Vapor Transport: Thermodynamic Considerations and Experimental Results, J. Crystal Growth, 287, 339-343 (2006).
  21. C. H. Su, M. A. George, W. Palosz, S. Feth, and S. L. Lehoczky, Contactless Growth of ZnSe Single Crystals by Physical Vapor Transport, J. Crystal Growth, 213, 267-275 (2000).
  22. C. Paorici, C. Razzetti, M. Zha, L. Zanotti, L. Carotenuto, and M. Ceglia, Physical Vapour Transport of Urotropine: One-Dimensional Model, Mater. Chem. and Phys., 66, 132-137 (2000).
  23. A. Nadarajah, F. Rosenberger, and J. Alexander, Effects of buoyancy- driven flow and thermal boundary conditions on physical vapor transport, J. Crystal Growth, 118, 49-59 (1992).
  24. F. Rosenberger, J. Ouazzani, I. Viohl, and N. Buchan, Physical vapor transport revised, J. Crystal Growth, 171, 270-287 (1997).
  25. P. A. Tebbe, S. K. Loyalka, and W. M. B. Duval, Finite element modeling of asymmetric and transient flowfields during physical vapor transport, Finite Elem. Anal. Des., 40, 1499-1519 (2004).
  26. M. Alsaady, R. Fu, B. Li, R. Boukhanouf, and Y. Yan, Thermo-physical properties and thermo-magnetic convection of ferrofluid, Appl. Therm. Eng., 88, 14-21 (2015).
  27. T. Qin, Z. Tukovic, and R. O. Grigoriev, Buoyancy-thermocapillary convection of volatile fluids under their vapors, Int. J. Heat Mass Transfer, 80, 38-49 (2015).
  28. F. Rosenberger and G. Muller, Interfacial transport in crystal growth, a parameter comparison of convective effects, J. Crystal Growth, 65, 91-104 (1983).
  29. S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corp., Washington D. C., (1980).
  30. B. S. Jhaveri and F. Rosenberger, Expansive Convection in Vapor Transport across Horizontal Enclosures, J. Crystal Growth, 57, 57-64 (1982).
  31. G. T. Kim and M. H. Kwon, Effects of solutally dominant convection on physical vapor transport for a mixture of $Hg_2Br_2$ and $Br_2$ under microgravity environments, Korean Chem. Eng. Res., 52, 75-80 (2014).

Cited by

  1. Numerical Analysis for Impurity Effects on Diffusive-convection Flow Fields by Physical Vapor Transport under Terrestrial and Microgravity Conditions: Applications to Mercurous Chloride vol.27, pp.3, 2016,