Enhanced Antimicrobial Activities and Physicochemical Characteristics of Isoliquiritigenin Encapsulated in Hydroxypropyl-β-Cyclodextrin

아이소리퀴리티게닌을 담지한 2-하이드록시프로필-베타사이클로덱스트린의 물리화학적 특성 및 항균활성 연구

  • Kim, Hae Soo (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Im, Na Ri (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Park, Soo Nam (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology)
  • 김해수 (서울과학기술대학교 정밀화학과 나노바이오화장품연구실, 화장품종합기술연구소) ;
  • 임나리 (서울과학기술대학교 정밀화학과 나노바이오화장품연구실, 화장품종합기술연구소) ;
  • 박수남 (서울과학기술대학교 정밀화학과 나노바이오화장품연구실, 화장품종합기술연구소)
  • Received : 2015.10.05
  • Accepted : 2015.11.15
  • Published : 2015.12.10


Isoliquiritigenin (ILG) is a hydrophobic component in licorice and has a variety of pharmaceutical and biological activities. In this study, we prepared an isoliquiritigenin-hydroxypropyl-${\beta}$-cyclodextrin (ILG/HP-${\beta}$-CD) complex by freeze-drying method to enhance its water solubility. The complex was characterized by phase solubility studies, DSC, SEM, and 1H NMR. Antimicrobial activities against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) were evaluated by broth dilution method. The results showed that the stoichiometry of ILG/HP-${\beta}$-CD complex was 1 : 1. The antimicrobial activity of ILG/HP-${\beta}$-CD complex was higher than that of using free ILG against S. aureus and E. coli. Therefore, we suggest that ILG/HP-${\beta}$-CD complex may be used as a natural antiseptic and could potentially replace synthetic preservatives in cosmetic and food industries.


isoliquiritigenin;hydroxypropyl-${\beta}$-cyclodextrin;complexation;characterization;antimicrobial activity


Grant : Cooperative Research Program for Agriculture Science & Technology Development

Supported by : Rural Development Administration


  1. X. Zhang, E. D. Yeung, J. Wang, E. E. Panzhinskiy, C. Tong, W. Li, and J. Li, Isoliquiritigenin, a natural anti-oxidant, selectively inhibits the proliferation of prostate cancer cells, Clin. Exp. Pharmacol. Physiol., 37, 841-847 (2010).
  2. H. Haraguchi, H. Ishikawa, K. Mizutani, Y. Tamura, and T. Kinoshita, Antioxidative and superoxide scavenging activities of retrochalcones in Glycyrrhiza inflata, Bioorg. Med. Chem., 6, 339-347 (1998).
  3. J. Y. Kim, S. J. Park, K. J. Yun, Y. W. Cho, H. J. Park, and K. T. Lee, Isoliquiritigenin isolated from the roots of Glycyrrhiza uralensis inhibits LPS-induced iNOS and COX-2 expression via the attenuation of $NF-{\kappa}B$ in RAW 264.7 macrophages, Eur. J. Pharmacol., 584, 175-184 (2008).
  4. O. Nerya, J. Vaya, R. Musa, and S. Izrael, R. Ben-Arie and S. Tamir, Glabrene and Isoliquiritigenin as Tyrosinase Inhibitors from Licorice Roots, J. Agric. Food Chem., 51, 1201-1207 (2003).
  5. J. Y. Bae, H. N. Jang, and S. N. Park, Antimicrobial Activities of Licorice Extracts from Various Countries of Origin according to Extraction Conditions, Korean J. Microbiol. Biotechnol., 42, 361-366 (2014).
  6. T. Loftsson and M. E. Brewster, Pharmaceutical applications of cyclodextrins. 1. drug solubilization and stabilization, J. Pharm. Sci., 85, 1017-1025 (1996).
  7. E. M. M. Del Valle, Cyclodextrins and their uses: a review, Process Biochem., 39, 1033-1046 (2003).
  8. C. Yuan, Z. Lu, and Z. Jin, Characterization of an inclusion complex of ethyl benzoate with hydroxypropyl-${\beta}$-cyclodextrin, Food Chem, 152, 140-145 (2014).
  9. C. Danciu, C. Soica, M. Oltean, S. Avram, F. Borcan, E. Csanyi, R. Ambrus, I. Zupko, D. Muntean, C. A. Dehelean, M. Craina, and R. A. Popovici, Genistein in 1 : 1 Inclusion Complexes with Ramified Cyclodextrins: Theoretical, Physicochemical and Biological Evaluation, Int. J. Mol. Sci., 15, 1962-1982 (2014).
  10. H. Liang, Q. Yuan, F. Vriesekoop, and F. Lv, Effects of cyclodextrins on the antimicrobial activity of plant-derived essential oil compounds, Food Chem., 135, 1020-1027 (2012).
  11. J. A. Kamimura, E. H. Santos, L. E. Hill, and C. L. Gomes, Antimicrobial and antioxidant activities of carvacrol microencapsulated in hydroxypropyl-beta-cyclodextrin, LWT-Food. Sci. Technol., 57, 701-709 (2014).
  12. T. Higuchi and K. A. Connors, Phase-solubility techniques, Adv. Anal. Chem. Instr., 4, 212-217 (1965).
  13. A. L. Brandt, A. Castillo, K. B. Harris, J. T. Keeton, M. D. Hardin, and T. M. Taylor, Inhibition of Listeria monocytogenes by food antimicrobials applied singly and in combination, J. Food. Sci., 75, 557-563 (2010).
  14. Y. Yao, Y. Xie, C. Hong, G. Li, H. Shen, and G. Ji, Development of a myricetin/hydroxypropyl-${\beta}$-cyclodextrin inclusion complex: Preparation, characterization, and evaluation, Carbohydr. Polym., 110, 329-337 (2014).
  15. S. X. Ma, W. Chen, X. D. Yang, N. Zhang, S. J. Wang, L. Liu, and L. J. Yang, Alpinetin/hydroxypropyl-${\beta}$-cyclodextrin host-guest system: preparation, characterization, inclusion mode, solubilization and stability, J. Pharm. Biomed. Sci., 67-68, 193-200 (2012).
  16. Z. Huanga, S. Tina, X. Ge, J. Zhang, S. Li, and M. Li. Complexation of chlorpropham with hydroxypropyl-${\beta}$-cyclodextrinand its application in potato sprout inhibition, Carbohydr. Polym., 107, 241-246 (2014).
  17. J. Chao, J. Su, J. Li, W. Zhao, S. Huang, and R. Du, Investigation on the inclusion behaviour of baicalein with ${\beta}$-cyclodextrin and derivatives and their antioxidant ability study, Supramol. Chem., 23, 641-649 (2011).
  18. Y. Jiang, X. Sha, W. Zhang, and X. Fang, Complex of 9-nitro-camptothecin in hydroxypropyl-${\beta}$-cyclodextrin: In vitro and in vivo evaluation, Int. J. Pharm., 397, 116-121 (2010).