DOI QR코드

DOI QR Code

Fabrication and Characteristics of Mesophase Pitch-Based Graphite Foams Prepared Using PVA-AAc Solution

PVA-AAc 용액을 사용한 메조페이스 핏치기반 그라파이트 폼의 제조 및 특성

  • Kim, Ji-Hyun (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Lee, Sangmin (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Jeong, Euigyung (The 4th R&D Institute-4, Agency for Defense Development) ;
  • Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
  • 김지현 (충남대학교 공과대학 바이오응용화학과) ;
  • 이상민 (충남대학교 공과대학 바이오응용화학과) ;
  • 정의경 (국방과학연구소) ;
  • 이영석 (충남대학교 공과대학 바이오응용화학과)
  • Received : 2015.09.16
  • Accepted : 2015.11.11
  • Published : 2015.12.10

Abstract

Graphite foams (GFs) were prepared by adding different amounts of mesophase pitch (MP) into polyvinyl alcohol-acrylic acid (PVA-AAc) solution followed by the heat treatment. It was confirmed that the pore diameters of GFs were controlled by the slurry concentration, which was the mesophase content added in polymer solution, and their thermal conductivity and compressive strength were also controlled by porosities of GFs formed at different conditions. The resulting GFs in this study had the highest thermal conductivity of $53.414{\pm}0.002W/mK$ and compressive strength of $1.348{\pm}0.864MPa$ at 0.69 in porosity. The thermal conductivity of MP based GFs increased approximately 23 times higher than that of using isotropic pitch based GFs due to the developed graphitic structure.

Keywords

graphite foam;mesophase pitch;isotropic pitch;thermal conductivity;compressive strength

Acknowledgement

Supported by : Agency for Defense Development

References

  1. M. Inagaki, J. Qiu, and Q. Guo, Carbon foam: Preparation and application, Carbon, 87, 128-152 (2015). https://doi.org/10.1016/j.carbon.2015.02.021
  2. J. Klett, R. Hardy, E. Romine, C. Walls, and T. Burchell, High-thermal-conductivity, mesophase-pitch-derived carbon foams: effect of precursor on structure and properties, Carbon, 38, 953-973 (2000). https://doi.org/10.1016/S0008-6223(99)00190-6
  3. C. Chen, E. B. Kennel, A. H. Stiller, P. G. Stansberry, and J. W. Zondlo, Carbon foam derived from various precursors, Carbon, 44, 1535-1543 (2006). https://doi.org/10.1016/j.carbon.2005.12.021
  4. S. Chand, Carbon fibers for composites, J. Mater. Sci., 35, 1303-1313 (2000). https://doi.org/10.1023/A:1004780301489
  5. R. Chen, R. Yao, W. Xia, and R. Zou, Electro/photo to heat conversion system based on polyurethane embedded graphite foam, Appl. Energy, 152, 183-188 (2015). https://doi.org/10.1016/j.apenergy.2015.01.022
  6. R. Prieto, E. Louis, and J. M. Molina, Fabrication of mesophase pitch-derived open-pore carbon foams by replication processing, Carbon, 50, 1904-1912 (2012). https://doi.org/10.1016/j.carbon.2011.12.041
  7. L. Zhai, X. Liu, T. Li, Z. Feng, and Z. Fan, Vacuum and ultrasonic co-assisted electroless copper plating on carbon foams, Vacuum, 114, 21-25 (2015). https://doi.org/10.1016/j.vacuum.2014.12.005
  8. C. Calebrese, G. A. Eisman, D. J. Lewis, and L. S. Schadler, Swelling and related mechanical and physical properties of carbon nanofiber filled mesophase pitch for use as a bipolar plate material, Carbon, 48, 3939-3946 (2010). https://doi.org/10.1016/j.carbon.2010.06.061
  9. Y. Cheng, C. Fang, J. Su, R. Yu, and T. Li, Carbonization behavior and mesophase conversion kinetics of coal tar pitch using a low temperature molten salt method, J. Anal. Appl. Pyrol., 109, 90-97 (2014). https://doi.org/10.1016/j.jaap.2014.07.009
  10. R. Prieto, E. Louis, and J. M. Molina, Fabrication of mesophase pitch-derived open-pore carbon foams by replication processing, Carbon, 50, 1904-1912 (2012). https://doi.org/10.1016/j.carbon.2011.12.041
  11. R. M. Always-Cooper, D. P. Anderson, and A. A. Ogale, Carbon black modification of mesophase pitch-based carbon fibers Carbon, 59, 40-48 (2013). https://doi.org/10.1016/j.carbon.2013.02.048
  12. W. Lin, B. Sunden, and J. Yuan, A performance analysis of porous graphite foam heat exchangers in vehicles, Appl. Therm. Eng., 50, 1201-1210 (2013). https://doi.org/10.1016/j.applthermaleng.2012.08.047
  13. I. Solmus, Numerical investigation of heat transfer and fluid flow behaviors of a block type graphite foam heat sink inserted in a rectangular channel, Appl. Therm. Eng., 78, 605-615 (2015). https://doi.org/10.1016/j.applthermaleng.2014.11.066
  14. A. G. Straatman, N. C. Gallego, B. E. Thompson, and H. Hangan, Thermal characterization of porous carbon foam-convection in parallel flow, Int. J. Heat and Mass Transfer, 49, 1991-1998 (2006). https://doi.org/10.1016/j.ijheatmasstransfer.2005.11.028
  15. W. W. Focke, H. Badenhorst, S. Ramjee, H. J. Kruger, R. V. Schalkwyk, and B. Rand, Graphite foam from pitch and expandable graphite, Carbon, 73, 41-50 (2014). https://doi.org/10.1016/j.carbon.2014.02.035
  16. H. Liu, T. Li, X. Wang, W. Zhang, and T. Zhao, Preparation and characterization of carbon foams with high mechanical strength using modified coal tar pitches, J. Anal. Appl. Pyrol., 110, 442-447 (2014). https://doi.org/10.1016/j.jaap.2014.10.015
  17. K. Lafdi, M. Almajali, and O. Huzayyin, Thermal properties of copper-coated carbon foams, Carbon, 47, 2620-2626 (2009). https://doi.org/10.1016/j.carbon.2009.05.014
  18. A. Yadav, R. Kumar, G. Bhatia, and G. L. Verma, Development of mesophase pitch derived high thermal conductivity graphite foam using a template method, Carbon, 49, 3622-3630 (2011). https://doi.org/10.1016/j.carbon.2011.04.065
  19. M. Karthik, A. Faik, S. Doppiu, V. Roddatis, and B. D'Ajuanno, A simple approach for fabrication of interconnected graphitized macroporous carbon foam with uniform mesopore walls by using hydrothermal method, Carbon, 87, 434-443 (2015). https://doi.org/10.1016/j.carbon.2015.02.060
  20. J. H. Kim and Y. S. Lee, Characteristics of a high compressive strength graphite foam prepared from pitches using a PVA-AAc solution, J. Ind. Eng. Chem., 30, 127-133 (2015). https://doi.org/10.1016/j.jiec.2015.05.013
  21. C. Hou, Q. Zhang, Y. Li, and H. Wang, Graphene-polymer hydrogels with stimulus-sensitive volume changes, Carbon, 50, 1959-1965 (2012). https://doi.org/10.1016/j.carbon.2011.12.049
  22. Z. Zhao, X. Wang, J. Qiu, J. Lin, D. Xu, C. Zhang, and M. Lv, X. Yang, Three-dimentional graphene-based hydrogel/aerogel materials, Rev. Adv. Mater. Sci., 36, 137-151 (2014).
  23. S. Kumar, M. Srivastava, Mesophase formation behavior in petroleum residues, Carbon Lett., 16(3), 171-182 (2015). https://doi.org/10.5714/CL.2015.16.3.171
  24. H. K Shin, M. Park, H. Y. Kim, and S. J. Park, Influence of oxidative atmosphere of the electron beam irradiation on cyclization of PAN-based fibers, Carbon Lett., 16(3), 219-221 (2015). https://doi.org/10.5714/CL.2015.16.3.219
  25. L. James, S. Austin, C. A. Moore, D. Stephens, K. K. Walsh, and G. Dale Wesson, Modeling the principle physical parameters of graphite carbon foam, Carbon, 48, 2418-2424 (2010). https://doi.org/10.1016/j.carbon.2010.02.043
  26. S. Li, Y. Tian, Y. Zhong, X. Yan, Y. Song, Q. Guo, J. Shi, and L. Liu, Formation mechanism of carbon foams derived from mesophase pitch, Carbon, 49, 618-624 (2011). https://doi.org/10.1016/j.carbon.2010.10.007
  27. J. H. Kim and Y. S. Lee, Preparation and characterization of graphite foams, J. Ind. Eng. Chem., Doi:10.1016/j.jiec.2015.09.003. (2015). https://doi.org/10.1016/j.jiec.2015.09.003
  28. P. K. Pandey, P. Smitha, and N. S. Gajbhiye, Synthesis and characterization of nanostructured PZT encapsulated PVA-PAA hydrogel, J. Polym. Res., 15, 397-402 (2008). https://doi.org/10.1007/s10965-008-9184-4
  29. M. S. Park, Y. Ko, M. J. Jung, and Y. S. Lee, Stabilization of pitch-based carbon fibers accompanying electron beam irradiation and their mechanical properties, Carbon Lett., 16(2), 121-126 (2015). https://doi.org/10.5714/CL.2015.16.2.121
  30. M. Karthik, A. Faik, S. Doppiu, V. Roddatis, and B. D'Aguanno, A simple approach for fabrication of interconnected graphitized macroporous carbon foam with uniform mesopore walls by using hydrothermal method, Carbon, 87, 434-443 (2015). https://doi.org/10.1016/j.carbon.2015.02.060
  31. R. Prieto, E. Louis, and J. M. Molina, Fabrication of mesophase pitch-derived open-pore carbon foams by replication processing, Carbon, 50, 1904-1912 (2012). https://doi.org/10.1016/j.carbon.2011.12.041
  32. Y. Chen, B. Z. Chen, X. C. Shi, H. Xu, Y. J. Hu, Y. Yuan, and N. B. Shen, Preparation of pitch-based carbon foam using polyurethane foam template, Carbon, 45, 2126-2139 (2007). https://doi.org/10.1016/j.carbon.2007.06.020
  33. G. Chollon, S. Delettrez, and F. Langlais, Chemical vapour infiltration and mechanical properties of carbon open-cell foams, Carbon, 66, 18-30 (2014). https://doi.org/10.1016/j.carbon.2013.08.021
  34. K. C. Leong and H. Y. Li, Theoretical study of the effective thermal conductivity of graphite foam based on a unit cell model, Int. J. Heat and Mass Transfer, 54, 5491-5496 (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2011.07.042
  35. N. Bekoz and E. Oktay, Mechanical properties of low alloy steel foams: Dependency on porosity and pore size, Mater. Sci. Eng. A, 576, 82-90 (2013). https://doi.org/10.1016/j.msea.2013.04.009
  36. T. Araki, K. Asano, T. Awao, and H. Takita, Method for heavying polycyclic substances, US Patent 3,718,574 (1973).
  37. M. Calvo, R. Garcia, A. Arenillas, I. Suarez, and S. R. Moinelo, Carbon foams from coals. A preliminary study, Fuel, 84, 2184-2189 (2005). https://doi.org/10.1016/j.fuel.2005.06.008
  38. F. Watanabe, S. Ishida, Y. Korai, I. Mochida, I. Kato, Y. Sakai, and M. Kamatsu, Pitch-based carbon fiber of high compressive strength prepared from synthetic isotropic pitch containing mesophase spheres, Carbon, 37, 961-967 (1999). https://doi.org/10.1016/S0008-6223(98)00251-6