DOI QR코드

DOI QR Code

Activation of peroxisome proliferator-activated receptor gamma induces anti-inflammatory properties in the chicken free avian respiratory macrophages

  • Mutua, Mbuvi P. (Department of Zoological Sciences, Kenyatta University) ;
  • Steinaa, Lucilla (International Livestock Research Institute) ;
  • Shadrack, Muya M. (Department of Zoology, Jomo Kenyatta University of Agriculture and Technology) ;
  • Muita, Gicheru M. (Department of Zoological Sciences, Kenyatta University)
  • Received : 2015.07.10
  • Accepted : 2015.11.15
  • Published : 2015.11.30

Abstract

Background: Activation of peroxisome proliferator activated receptor gamma ($PPAR{\gamma}$) in the alveolar macrophages (AM) by selective synthetic $PPAR{\gamma}$ ligands, improves the ability of the cells to resolve inflammation. In birds, respiratory macrophages are known as free avian respiratory macrophages (FARM) and show distinct functional differences from AM. The effects of treating FARM with $PPAR{\gamma}$ ligands are unclear. Methods: FARM were harvested by lavage of chicken respiratory tract and their morphology assessed at microscopic level. The effects of $PPAR{\gamma}$ agonists on the FARM in vitro viability, phagocytic capacity and proinflammatory cytokine (TNF-${\alpha}$) production were assessed. Results: FARM had eccentric nucleus and plasma membrane ruffled with filopodial extensions. Ultrastructurally, numerous vesicular bodies presumed to be lysosomes were present. FARM treated with troglitazone, a selective $PPAR{\gamma}$ agonist, had similar in vitro viability with untreated FARM. However, treated FARM co-cultured with polystyrene particles, internalized more particles with a mean volume density of 41 % compared to that of untreated FARM of 21 %. Further, treated FARM significantly decreased LPS-induced TNF-${\alpha}$ production in a dose dependent manner. Conclusion: Results from this study show that $PPAR{\gamma}$ synthetic ligands enhance phagocytic ability of FARM. Further the ligands attenuate production of proinflammatory cytokines in the FARM, suggesting potential therapeutic application of $PPAR{\gamma}$ ligands in the management of respiratory inflammatory disorders in the poultry industry.

Keywords

Avian;Free avian respiratory macrophages;Peroxisome proliferator-activated receptor;Troglitazone

References

  1. Geiser M, Baumann M, Cruz-Orive LM, Hof V, Waber U, Gehr P. The effect of particle inhalation on macrophage number and phagocytic activity in the intrapulmonary conducting airways. Am J Respir Cell Mol Biol. 2002;10:594-603.
  2. Kumar V, Sharma A. Neutrophils: Cinderella of innate immune system. Int Immunopharmacol. 2010;10:1325-34. https://doi.org/10.1016/j.intimp.2010.08.012
  3. Yan Y, Gang H, Erran L, Qiuyue W, Jian K. PPAR Gamma agonists regulate tobacco smoke - induced toll like receptor 4 expression in alveolar macrophages. Respir Res. 2014;15:1-14. https://doi.org/10.1186/1465-9921-15-1
  4. Desvergne B, Wahli W. Peroxisome proliferator Activated Receptors: Nuclear control of Metabolism. Endocr Rev. 1999;20:649-88.
  5. Kliewer SA, Forman BM, Blumberg B, Ong ES, Borgmeyer U, Mangelsdorf DJ, et al. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc Natl Acad Press USA. 1994;91:7355-9. https://doi.org/10.1073/pnas.91.15.7355
  6. Braissant O, Foufelle F, Scotto C, Dauca M, Wahli W. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-${\alpha}$, -${\delta}$, and -${\gamma}$ in the adult rat. Endocrinology. 1996;137:354-66. https://doi.org/10.1210/endo.137.1.8536636
  7. Chawla A, Schwarz EJ, Dimaculangan DD, Lazar MA. Peroxisome proliferator-activated receptor (PPAR) ${\gamma}$: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology. 1994;135:798-800. https://doi.org/10.1210/endo.135.2.8033830
  8. Kazuhiro A, Shigekazu S, Takafumi S, Kingo C, Hirotoshi N. Antiinflammatory Roles of Peroxisome Proliferator Activated Receptor ${\gamma}$ in Human Alveolar Macrophages. Am J Respir Crit Care Med. 2004;169:195-200. https://doi.org/10.1164/rccm.200207-740OC
  9. Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor ${\gamma}$ (PPAR ${\gamma}$). J Biol Chem. 1995;270:1295-312956. https://doi.org/10.1074/jbc.270.3.1295
  10. Willson TM, Cobb JE, Cowan DJ, Wiethe RW, Correa ID, Prakash SR, et al. The structure- activity relationship between peroxisome proliferator-activated receptor ${\gamma}$ agonism and the antihyperglycemic activity of thiazolidinediones. J Med Chem. 1996;39:665-8. https://doi.org/10.1021/jm950395a
  11. Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature. 1998;391:82-6. https://doi.org/10.1038/34184
  12. Catherine G, Siobhan M, Killeen H, Nicos AP, Nancy H, Hugh RB. Lipoxins Rapidly Stimulate Nonphlogistic Phagocytosis of Apoptotic Neutrophils by Monocyte Derived Macrophages. J Immunol. 2000;164:1663-7. https://doi.org/10.4049/jimmunol.164.4.1663
  13. Takada I, Kobayashi M. Structural features and transcriptional activity of chicken PPARs (${\alpha}$, ${\beta}$ and ${\gamma}$). PPAR Res. 2013;2012:1-7.
  14. Sato K, Fukao K, Seki Y, Akiba Y. Expression of the chicken PPAR-gamma gene is influenced by aging, nutrition, and agonist administration. Poult Sci. 2004;83:1342-7. https://doi.org/10.1093/ps/83.8.1342
  15. Currie RJW. Ascites in poultry: recent investigations. Avian Pathol. 1999;28:313-26. https://doi.org/10.1080/03079459994560
  16. Sultana S, Rashid SMH, Islam MN, Ali MH, Azam MG. Pathological Investigation of Avian Aspergillosis in Commercial Broiler Chicken at Chittagong District. Int J Innov Appl Stud. 2015;10:366-76.
  17. Golemboski KA, Whelan J, Shaw S, Kinsella JE, Dietert PR. Avian inflammatory Macrophage Function: Shifts in Arachidonic Acid Metabolism, Respiratory Burst, and Cell- Surface Phenotype During Response to Sephadex. J Leukoc. 1990;48:495-501. https://doi.org/10.1002/jlb.48.6.495
  18. Brown RE, Brain JD, Wang N. The avian respiratory system: a unique model for studies of respiratory toxicosis and for monitoring air quality. Environ Health Perspect. 1997;105:188-200. https://doi.org/10.1289/ehp.97105188
  19. Reese SG, Dalamani T, Kaspers B. The avian lung - immune system: a review. J Cell Biol. 2006;37:311-24.
  20. Fulton RM, Reed WM, DeNicola DB. Light microscopic and ultra-structural characterization of cells recovered by respiratory lavage of 2 and 6 week old chickens. Avian Dis. 1990;34:87-109. https://doi.org/10.2307/1591338
  21. Toth TE. Nonspecific cellular defense of the avian respiratory system: a review. Dev Comp Immunol. 2000;24:121-39. https://doi.org/10.1016/S0145-305X(99)00068-3
  22. Kiama SG, Adekunle JS, Maina JN. Comparative in vitro study of interactions between particles and respiratory surface macrophages, erythrocytes, and epithelial cells of the chicken and the rat. J Anat. 2008;213:452-63. https://doi.org/10.1111/j.1469-7580.2008.00951.x
  23. Maina JN, Cowley HM. Ultra-structural characterization of the pulmonary cellular defenses in the lung of a bird, the rock dove, Columbia livia. Royal Society London. 1998;256:1567-72.
  24. Mutua PM, Gicheru MM, Makanya AN, Kiama SG. Comparative quantitative and qualitative attributes of free surface respiratory macrophages in the duck and rabbit. Int J Morphol. 2011;2:353-62.
  25. Nganpiep L, Maina JN. Composite cellular defense stratagem in the avian respiratory system: functional morphology of the free surface macrophages and specialized pulmonary epithelia. J Anat. 2002;200:499-516. https://doi.org/10.1046/j.1469-7580.2002.00052.x
  26. Toth TE, Siegel PB. Cellular defense for the avian respiratory tract: paucity of free residing macrophages in the normal chicken. Avian Dis. 1986;30:67-75. https://doi.org/10.2307/1590614
  27. Gundersen HJG. Notes on the estimation of the numerical density of arbitrary profiles: the edge effect. J Microsc. 1977;111:219-23. https://doi.org/10.1111/j.1365-2818.1977.tb00062.x
  28. Krey G, Braissant O, L'Horset F, Kalkhoven E, Perroud M, Parker MG, et al. Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol Endocrinol. 1997;11:779-91. https://doi.org/10.1210/mend.11.6.0007
  29. Nagy L, Tontonoz P, Alvarez JGA, Chen H, Evans RM. Oxidized LDL regulates macrophage gene expression through ligand activation of PPAR ${\gamma}$. Cell. 1998;93:229-40. https://doi.org/10.1016/S0092-8674(00)81574-3
  30. Van Waeyenberghe L, Frank P, Katharina D, Richard D, Harman F, Shao-JI L. Germination of Aspergillus fumigatus inside avian respiratory macrophages is associated with cytotoxicity. Vet Res. 2012;43:1-5. https://doi.org/10.1186/1297-9716-43-1
  31. Nicod LP. Lung defenses: an overview. Eur Respir Rev. 2005;14:45-50. https://doi.org/10.1183/09059180.05.00009501
  32. Peter KKW, Ian KC, Paul JE, Mathias E, Ian PW. The Role of the Interleukin-6 Family of Cytokines in Inflammatory Arthritis and Bone Turnover. Arthritis Rheum. 2003;48:1177-89. https://doi.org/10.1002/art.10943
  33. Zhang SP, Lillehoj HS, Ruff MD. In vivo role of tumor necrosis like factors in Eimeria tenella infection. Avian Dis. 1995;39:859-66. https://doi.org/10.2307/1592424
  34. Klasing K. Avian inflammatory response mediation by macrophages. Poult Sci. 1991;70:1176-86. https://doi.org/10.3382/ps.0701176
  35. Pascal A, Simon T, Dongying W, Manjula D, Guillaume L. Aspergillus fumigates in poultry. Int J Microbiol. 2011;2011(10):1-14.
  36. Maina JN. Some recent advances on the study and understanding of the functional design of the avian lung: morphological perspectives. Biol Rev Camb Philos Soc. 2002;77:97-152. https://doi.org/10.1017/S1464793101005838