DOI QR코드

DOI QR Code

Progression of NETs Correlating with Tumor-Related Diseases

  • Zhang, Le-Meng (Thoracic Medicine Department 1, Hunan Cancer Hospital, Affiliated to Xiangya Medical School, Central South University) ;
  • Chen, Jian-Hua (Thoracic Medicine Department 1, Hunan Cancer Hospital, Affiliated to Xiangya Medical School, Central South University)
  • Published : 2015.12.03

Abstract

As an important component of innate immune system, neutrophil has been involved in many other physiological processes, including tumor-related diseases. In 2004, the phenomenon of NETs was reported for the first time. Extracellular decondensed chromatin, released from activated neutrophils, forms a network structure, which is NETs. This review focuses on the function of NETs in tumor cell proliferation, metastasis, and tumor-associated thrombosis; it also explores the application of NETs specific markers in the diagnosis of pre-thrombotic state and tumor associated diseases; it also explores NETs inhibitor for the treatment of tumor-related diseases. In view of the rapid development of NETs, it may provide new therapeutic targets for tumor-associated thrombosis, and even tumor itself.

Keywords

Neutrophil extracellular traps;tumor-related diseases;thrombosis;citrullinated histone

References

  1. Ammollo CT, Semeraro F, Xu J, et al (2011). Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation. J Thromb Haemost, 9, 1795-803. https://doi.org/10.1111/j.1538-7836.2011.04422.x
  2. Amulic B, Cazalet C, Hayes GL, et al (2012). Neutrophil function: from mechanisms to disease. Annu Rev Immunol, 30, 459-89. https://doi.org/10.1146/annurev-immunol-020711-074942
  3. Berger-Achituv S, Brinkmann V, Abed UA, et al (2013). A proposed role for neutrophil extracellular traps in cancer immunoediting. Front Immunol, 4, 48.
  4. Bergers G, Brekken R, McMahon G, et al (2000). Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol, 2, 737-744. https://doi.org/10.1038/35036374
  5. Borissoff JI, Joosen IA, Versteylen MO, et al (2013). Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arterioscler Thromb Vasc Biol, 33, 2032-40. https://doi.org/10.1161/ATVBAHA.113.301627
  6. Brandau S, Dumitru CA, Lang S (2013). Protumor and antitumor functions of neutrophil granulocytes. Semin Immunopathol, 35, 163-76. https://doi.org/10.1007/s00281-012-0344-6
  7. Brinkmann V, Reichard U, Goosmann C, et al (2004). Neutrophil extracellular traps kill bacteria. Science, 303, 1532-5. https://doi.org/10.1126/science.1092385
  8. Chang X, Han J (2006). Expression of peptidylarginine deiminase type 4 (PAD4) in various tumors. Mol Carcinog, 45, 183-96. https://doi.org/10.1002/mc.20169
  9. Chang X, Han J, Pang L, et al (2009). Increased PADI4 expression in blood and tissues of patients with malignant tumors. Bmc Cancer, 9, 40. https://doi.org/10.1186/1471-2407-9-40
  10. Clark SR, Ma AC, Tavener SA, et al (2007). Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med, 13, 463-9. https://doi.org/10.1038/nm1565
  11. Cools-Lartigue J, Spicer J, McDonald B, et al (2013). Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest.
  12. Cools-Lartigue J, Spicer J, Najmeh S, et al (2014). Neutrophil extracellular traps in cancer progression. Cell Mol Life Sci, 71, 4179-94. https://doi.org/10.1007/s00018-014-1683-3
  13. Darrah E, Andrade F (2012). NETs: the missing link between cell death and systemic autoimmune diseases? Front Immunol, 3, 428.
  14. Demers M, Krause DS, Schatzberg D, et al (2012). Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci U S A, 109, 13076-81. https://doi.org/10.1073/pnas.1200419109
  15. Demers M, Wagner DD (2013). Neutrophil extracellular traps: A new link to cancer-associated thrombosis and potential implications for tumor progression. Oncoimmunol, 2, 22946. https://doi.org/10.4161/onci.22946
  16. Demers M, Wagner DD (2014). NETosis: a new factor in tumor progression and cancer-associated thrombosis. Semin Thromb Hemost, 40, 277-83. https://doi.org/10.1055/s-0034-1370765
  17. Fuchs TA, Abed U, Goosmann C, et al (2007). Novel cell death program leads to neutrophil extracellular traps. J Cell Biol, 176, 231-41. https://doi.org/10.1083/jcb.200606027
  18. Fuchs TA, Kremer HJ, Schatzberg D, et al (2012). Circulating DNA and myeloperoxidase indicate disease activity in patients with thrombotic microangiopathies. Blood, 120, 1157-64. https://doi.org/10.1182/blood-2012-02-412197
  19. Goldhaber SZ, Tapson VF (2004). A prospective registry of 5,451 patients with ultrasound-confirmed deep vein thrombosis. Am J Cardiol, 93, 259-62. https://doi.org/10.1016/j.amjcard.2003.09.057
  20. Gregory AD, Houghton AM (2011). Tumor-associated neutrophils: new targets for cancer therapy. Cancer Res, 71, 2411-6. https://doi.org/10.1158/0008-5472.CAN-10-2583
  21. Houghton AM, Rzymkiewicz DM, Ji H, et al (2010). Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nat Med, 16, 219-23. https://doi.org/10.1038/nm.2084
  22. Huh SJ, Liang S, Sharma A, et al (2010). Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Res, 70, 6071-82. https://doi.org/10.1158/0008-5472.CAN-09-4442
  23. Kannemeier C, Shibamiya A, Nakazawa F, et al (2007). Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc Natl Acad Sci U S A, 104, 6388-93. https://doi.org/10.1073/pnas.0608647104
  24. Kessenbrock K, Krumbholz M, Schonermarck U, et al (2009). Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med, 15, 623-5. https://doi.org/10.1038/nm.1959
  25. Leshner M, Wang S, Lewis C, et al (2012). PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures. Front Immunol, 3, 307.
  26. Li P, Li M, Lindberg MR, et al (2010). PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med, 207, 1853-62. https://doi.org/10.1084/jem.20100239
  27. Li P, Wang D, Yao H, et al (2010). Coordination of PAD4 and HDAC2 in the regulation of p53-target gene expression. Oncogene, 29, 3153-62. https://doi.org/10.1038/onc.2010.51
  28. Li P, Yao H, Zhang Z, et al (2008). Regulation of p53 target gene expression by peptidylarginine deiminase 4. Mol Cell Biol, 28, 4745-58. https://doi.org/10.1128/MCB.01747-07
  29. Longstaff C, Varju I, Sotonyi P, et al (2013). Mechanical stability and fibrinolytic resistance of clots containing fibrin, DNA, and histones. J Biol Chem, 288, 6946-56. https://doi.org/10.1074/jbc.M112.404301
  30. Makino H, Kunisaki C, Kosaka T, et al (2011). Perioperative use of a neutrophil elastase inhibitor in video-assisted thoracoscopic oesophagectomy for cancer. Br J Surg, 98, 975-82. https://doi.org/10.1002/bjs.7499
  31. Manfredi AA, Rovere-Querini P, Maugeri N (2010). Dangerous connections: neutrophils and the phagocytic clearance of activated platelets. Curr Opin Hematol, 17, 3-8. https://doi.org/10.1097/MOH.0b013e3283324f97
  32. Mantovani A (2009). The yin-yang of tumor-associated neutrophils. Cancer Cell, 16, 173-4. https://doi.org/10.1016/j.ccr.2009.08.014
  33. Martinod K, Demers M, Fuchs TA, et al (2013). Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proc Natl Acad Sci U S A, 110, 8674-9. https://doi.org/10.1073/pnas.1301059110
  34. Massberg S, Grahl L, von Bruehl ML, et al (2010). Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med, 16, 887-96. https://doi.org/10.1038/nm.2184
  35. Masson V, de la Ballina LR, Munaut C, et al (2005). Contribution of host MMP-2 and MMP-9 to promote tumor vascularization and invasion of malignant keratinocytes. Faseb J, 19, 234-6. https://doi.org/10.1096/fj.04-2140fje
  36. Metzler KD, Fuchs TA, Nauseef WM, et al (2011). Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood, 117, 953-9. https://doi.org/10.1182/blood-2010-06-290171
  37. Nakazawa D, Tomaru U, Yamamoto C, et al (2012). Abundant neutrophil extracellular traps in thrombus of patient with microscopic polyangiitis. Front Immunol, 3, 333.
  38. Palmer LJ, Cooper PR, Ling MR, et al (2012). Hypochlorous acid regulates neutrophil extracellular trap release in humans. Clin Exp Immunol, 167, 261-8. https://doi.org/10.1111/j.1365-2249.2011.04518.x
  39. Papayannopoulos V, Metzler KD, Hakkim A, et al (2010). Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol, 191, 677-91. https://doi.org/10.1083/jcb.201006052
  40. Sorensen HT, Mellemkjaer L, Olsen JH, et al (2000). Prognosis of cancers associated with venous thromboembolism. N Engl J Med, 343, 1846-50. https://doi.org/10.1056/NEJM200012213432504
  41. Spicer JD, McDonald B, Cools-Lartigue JJ, et al (2012). Neutrophils promote liver metastasis via Mac-1-mediated interactions with circulating tumor cells. Cancer Res, 72, 3919-27. https://doi.org/10.1158/0008-5472.CAN-11-2393
  42. Wang Y, Li M, Stadler S, et al (2009). Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol, 184, 205-13. https://doi.org/10.1083/jcb.200806072
  43. Wilson TJ, Nannuru KC, Futakuchi M, et al (2010). Cathepsin G-mediated enhanced TGF-beta signaling promotes angiogenesis via upregulation of VEGF and MCP-1. Cancer Lett, 288, 162-9. https://doi.org/10.1016/j.canlet.2009.06.035
  44. Xu J, Zhang X, Pelayo R, et al (2009). Extracellular histones are major mediators of death in sepsis. Nat Med, 15, 1318-21. https://doi.org/10.1038/nm.2053