DOI QR코드

DOI QR Code

Toward Charge Neutralization of CVD Graphene

  • Kim, Soo Min ;
  • Kim, Ki Kang
  • Received : 2015.10.23
  • Accepted : 2015.11.06
  • Published : 2015.11.30

Abstract

We report the systematic study to reduce extrinsic doping in graphene grown by chemical vapor deposition (CVD). To investigate the effect of crystallinity of graphene on the extent of the extrinsic doping, graphene samples with different levels of crystal quality: poly-crystalline and single-crystalline graphene (PCG and SCG), are employed. The graphene suspended in air is almost undoped regardless of its crystallinity, whereas graphene placed on an $SiO_2/Si$ substrate is spontaneously p-doped. The extent of p-doping from the $SiO_2$ substrate in SCG is slightly lower than that in PCG, implying that the defects in graphene play roles in charge transfer. However, after annealing treatment, both PCG and SCG are heavily p-doped due to increased interaction with the underlying substrate. Extrinsic doping dramatically decreases after annealing treatment when PCG and SCG are placed on the top of hexagonal boron nitride (h-BN) substrate, confirming that h-BN is the ideal substrate for reducing extrinsic doping in CVD graphene.

Keywords

graphene;doping;chemical vapor deposition;single crystalline;hexagonal boron nitride

References

  1. K. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, et al., Nature 438 197 (2005). https://doi.org/10.1038/nature04233
  2. A. K. Geim and K. S. Novoselov Nat. Mater. 6 183 (2007). https://doi.org/10.1038/nmat1849
  3. C. Dean, A. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, et al. Nature Nanotech. 5 722 (2010). https://doi.org/10.1038/nnano.2010.172
  4. C. Lee, X. Wei, J. W. Kysar, and J. Hone Science, 321 385 (2008). https://doi.org/10.1126/science.1157996
  5. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, et al. Nat. Nanotech. 5 574 (2010). https://doi.org/10.1038/nnano.2010.132
  6. J. Moon, D. Curtis, M. Hu, D. Wong, C. McGuire, P. Campbell, et al. Electron Device Letters, IEEE 30 650 (2009). https://doi.org/10.1109/LED.2009.2020699
  7. S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton, and J. Golovchenko Nature 467 190 (2010). https://doi.org/10.1038/nature09379
  8. S. Morozov, K. Novoselov, M. Katsnelson, F. Schedin, D. Elias, J. Jaszczak, et al. Phys. Rev. Lett. 100 016602 (2008). https://doi.org/10.1103/PhysRevLett.100.016602
  9. J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer Nature Nanotech. 3 206 (2008). https://doi.org/10.1038/nnano.2008.58
  10. M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. v. Klitzing, et al., Nano Lett. 10 1149 (2010). https://doi.org/10.1021/nl903162a
  11. W. H. Lee, J. W. Suk, J. Lee, Y. Hao, J. Park, J. W. Yang, et al. ACS Nano 6 1284 (2012). https://doi.org/10.1021/nn203998j
  12. K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, et al. Proc. Natl. Acad. Sci. USA 102 10451 (2005). https://doi.org/10.1073/pnas.0502848102
  13. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, et al. Science 324 1312 (2009). https://doi.org/10.1126/science.1171245
  14. X. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. Hannon, E. M. Vogel, et al. J. Am. Chem. Soc. 133 2816 (2011). https://doi.org/10.1021/ja109793s
  15. Y.-C. Lin, C.-C. Lu, C.-H. Yeh, C. Jin, K. Suenaga, and P.-W. Chiu Nano Lett. 12 414 (2011).
  16. J. Chan, A. Venugopal, A. Pirkle, S. McDonnell, D. Hinojos, C. W. Magnuson, et al. ACS Nano 6 3224 (2012). https://doi.org/10.1021/nn300107f
  17. Q. H. Wang, Z. Jin, K. K. Kim, A. J. Hilmer, G. L. Paulus, C.-J. Shih, et al. Nat. Chem, 4 724 (2012). https://doi.org/10.1038/nchem.1421
  18. L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus Phys. Rep. 473 51 (2009). https://doi.org/10.1016/j.physrep.2009.02.003
  19. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. Saha, U. Waghmare, et al. Nat. Nanotech. 3 210 (2008). https://doi.org/10.1038/nnano.2008.67
  20. A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. Magnuson, S. McDonnell, et al. Appl. Phys. Lett. 99 122108 (2011). https://doi.org/10.1063/1.3643444
  21. Z. Cheng, Q. Zhou, C. Wang, Q. Li, C. Wang, and Y. Fang Nano Lett. 11 767 (2011). https://doi.org/10.1021/nl103977d

Cited by

  1. Thickness-controlled multilayer hexagonal boron nitride film prepared by plasma-enhanced chemical vapor deposition vol.16, pp.9, 2016, https://doi.org/10.1016/j.cap.2016.03.025

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)