DOI QR코드

DOI QR Code

완전파형역산결과를 구조적 제약 조건으로 이용한 고해상도 전자탐사 복합역산 알고리듬 개발

Joint Electromagnetic Inversion with Structure Constraints Using Full-waveform Inversion Result

  • 정수철 (한양대학교 자원환경공학과) ;
  • 설순지 (한양대학교 자원환경공학과) ;
  • 변중무 (한양대학교 자원환경공학과)
  • Jeong, Soocheol (Dept. of Natural Resources and Geoenvironmental Engineering, Hanyang Univ.) ;
  • Seol, Soon Jee (Dept. of Natural Resources and Geoenvironmental Engineering, Hanyang Univ.) ;
  • Byun, Joongmoo (Dept. of Natural Resources and Geoenvironmental Engineering, Hanyang Univ.)
  • 투고 : 2014.07.24
  • 심사 : 2014.10.17
  • 발행 : 2014.11.30

초록

이종의 물리탐사자료를 이용한 복합역산은 단일 물리탐사자료를 이용한 역산과 비교시, 역산의 불확실성을 줄일 수 있고, 두 탐사자료의 장점을 함께 이용할 수 있다. 탄성파탐사자료를 이용한 역산은 유가스가 집적될 수 있는 복잡한 구조의 탐지에 유리한 장점을 가지지만 탄화수소의 직접적인 탐지에는 한계가 있다. 반면에, 인공송신원 해양전자탐사자료를 이용한 역산은 탄성파탐사자료를 이용한 역산결과에 비하여 해상도는 떨어지지만 유가스의 직접적인 탐지가 가능하다. 이 연구에서는 평면파를 이용한 완전파형역산을 통하여 획득한 고해상도의P파 속도모델을 cross-gradient 기법에 기반하여 구조적인 제약조건으로 사용하는 전자탐사 복합역산 알고리듬을 개발하였다. 개발된 알고리듬을 유가스전 탐사에 적용이 가능한지 확인하기 위하여, 가스층이 존재하는 단순구조의 모델과 배사구조에 오일저류층이 존재하는 모델의 합성탐사자료에 적용한 결과, 전자탐사자료만을 이용한 역산결과보다 복합역산을 이용한 결과가 보다 고해상도의 전기비저항 분포의 파악이 가능함을 보여주었다. 이는 오일저류층의 정확한 매장 위치 추정과, 매장량 계산에 보다 정확한 정보를 제공해 줄 것으로 기대된다.

과제정보

연구 과제 주관 기관 : 한국에너지기술평가원(KETEP)

참고문헌

  1. Abubakar, A., Habashy, T. M., Druskin, V. L., Knizhnerman, L., and Alumbaugh, D., 2008, 2.5D forward and inversion modeling for interpreting low-frequency electromagnetic measurements, Geophysics, 73, F165-F177. https://doi.org/10.1190/1.2937466
  2. Abubakar, A., van den Berg, P. M., and Fokkema, J. T., 2003, Towards nonlinear inversion for characterization of timelapse phenomena through numerical modelling, Geophysical Prospecting, 51, 285-293. https://doi.org/10.1046/j.1365-2478.2003.00369.x
  3. Archie, G. E., 1942, The electrical resistivity log as an aid in determining some reservoir characteristics, Petroleum Transactions of AIME, 146, 54-62. https://doi.org/10.2118/942054-G
  4. Ben-Hadj-Ali, H., Operto, S., and Virieux, J., 2011, An efficient frequency-domain full waveform inversion method using simultaneous encoded sources, Geophysics, 76, R109-R124. https://doi.org/10.1190/1.3581357
  5. Chung, W., Shin, C., and Pyun, S., 2010, 2D elastic waveform inversion in the Laplace domain, Bulletin of the Seismological Society of America, 100, 3239-3249. https://doi.org/10.1785/0120100061
  6. Colombo, D., Mantovani, M., Hallinan, S., and Virgilio, M., 2008, Sub?basalt depth imaging using simultaneous joint inversion of seismic and electromagnetic (MT) data: A CRB field study, 78th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2674-2678.
  7. Constable, S., 2010, Ten years of marine CSEM for hydrocarbon exploration, Geophysics, 75, 75A67-75A81. https://doi.org/10.1190/1.3483451
  8. Daubechies, I., Devore, R., Fornasier, M., and Gunturk, C. S., 2010, Iteratively reweighted least squares minimization for sparse recovery, Communications on Pure and Applied Mathematics, 63, 1-38. https://doi.org/10.1002/cpa.20303
  9. Doetsch, J., Linde, N., Coscia, I., Greenhalgh, S. A., and Green, A. G., 2010, Zonation for 3D aquifer characterization based on joint inversions of multimethod crosshole geophysical data, Geophysics, 75, G53-G64. https://doi.org/10.1190/1.3496476
  10. Drufuca, G., and Mazzottit, A., 1995, Ambiguities in AVO inversion of reflections from a gas-sand, Geophysics, 60, 134-141. https://doi.org/10.1190/1.1443740
  11. Gallardo, L. A., and Meju, M. A., 2003, Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data, Geophysical Research Letters, 30.
  12. Gallardo, L. A., and Meju, M. A., 2007, Joint two-dimensional cross-gradient imaging of magnetotelluric and seismic travelime data for structural and lithological classification, Geophysical Journal International, 169, 1261-1272. https://doi.org/10.1111/j.1365-246X.2007.03366.x
  13. Gallardo, L. A., Fontes, S. L., Meju, M. A., Buonora, M. P., and de Lugao, P. P., 2012, Robust geophysical integration through structure-coupled joint inversion and multispectral fusion of seismic reflection, magnetotelluric, magnetic, and gravity images: Example from Santos Basin offshore Brazil, Geophysics, 77, B237-B251. https://doi.org/10.1190/geo2011-0394.1
  14. Gao, G., Abubakar, A., and Habashy, T., 2010, Joint Inversion of Crosswell Electromagnetic and Seismic Data for Reservoir Petrophysical Parameters, SPE Annual Technical Conference and Exhibition, SPE 135307.
  15. Gao, G., Abubakar, A., and Habashy, T., 2012, Joint petrophysical inversion of electromagnetic and full-waveform seismic data, Geophysics, 77, WA3-WA18. https://doi.org/10.1190/geo2011-0157.1
  16. Ha, W., and Shin, C., 2013, Efficient Laplace-domain full waveform inversion using a cyclic shot subsampling method, Geophysics, 78, R37-R46. https://doi.org/10.1190/geo2012-0161.1
  17. Ha, W., Pyun, S., Son, W., Shin, C., Ko., S., and Seo., Y., 2008, A study of waveform inversion for improvement of sub-salt migration image, Jigu-Mulli-wa-Mulli-Tamsa, 11, 177-183.
  18. Han, N., Nam, M. J., Ku, B., and Kim, H. J., 2012, Threedimensional modeling of marine controlled-source electromagnetic surveys based on finite difference method, Jigu-Mulli-wa-Mulli-Tamsa, 15, 66-74.
  19. Harris, P., and MacGregor, L., 2006, Determination of reservoir properties from the integration of CSEM, seismic, and welllog data, First Break, 25, 53-59.
  20. Holland, P. W., and Welsch, R. E., 1977, Robust regression using iteratively reweighted least-squares, Communications in Statistics Theory and Methods, 6, 813-827. https://doi.org/10.1080/03610927708827533
  21. Hoversten, G. M., Cassassuce, F., Gasperikova, E., Newman, G. A., Chen, J., Rubin, Y. , Hou, Z., and Vasco, D., 2006, Direct reservoir parameter estimation using joint inversion ofmarine seismicAVAand CSEM data, Geophysics, 71, C1-C13. https://doi.org/10.1190/1.2194510
  22. Hu, W., Abubakar, A., and Habashy, T. M., 2009a, Joint electromagnetic and seismic inversion using structural constraints, Geophysics, 74, R99-R109. https://doi.org/10.1190/1.3246586
  23. Hu, W., Abubakar, A., and Habashy, T. M., 2009b, Simultaneous multifrequency inversion of full-waveform seismic data, Geophysics, 74, R1-R14. https://doi.org/10.1190/1.3273876
  24. Huber, P. J., 1981, Robust statistics, John Wiley & Sons.
  25. Ji, J., 2012, Robust inversion using biweight norm and its application to seismic inversion, Exploration Geophysics, 43, 70-76.
  26. Joo, Y., Seol, S. J., and Byun, J., 2013, Acoustic full-waveform inversion of surface seismic data using the Gauss-Newton method with active constraint balancing, Geophysical Prospecting, 61, 166-182. https://doi.org/10.1111/j.1365-2478.2012.01112.x
  27. Kang, S., Seol, S. J., and Byun, J., 2012, A feasibility study of $CO_2$ sequestration monitoring using the mCSEM method at a deep brine aquifer in a shallow sea, Geophysics, 77, E117-E126. https://doi.org/10.1190/geo2011-0089.1
  28. Kaputerko, A., Gribenko, A., and Zhdanov, M. S., 2007, Sensitivity analysis of marine CSEM surveys, 77th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 609-613.
  29. Kim, H. J., 2011, A scheme for computing primary fields in modeling of marine controlled-source electromagnetic surveys, Jigu-Mulli-wa-Mulli-Tamsa, 14, 185-190.
  30. Kim, H. J., and Kim, Y. H., 2008, Lower and upper bounding constraint of model parameters in inversion of geophysical data, 77th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 692-696.
  31. Kim, H. J., Song, Y., and Lee, K. H., 1997, High-frequency electromagnetic inversion for a dispersive layered earth, J. Geomag. Geoelctr., 49, 1439-1450. https://doi.org/10.5636/jgg.49.1439
  32. Krebs, J. R., Anderson, J. E., Hinkley, D., Neelamani, R., Lee, S., Baumstein, A., and Lacasse, M. D., 2009, Fast full-wavefield seismic inversion using encoded sources, Geophysics, 74, WCC177-WCC188. https://doi.org/10.1190/1.3230502
  33. Kwon, T., Seol, S. J., and Byun, J., 2014, Robust full waveform inversion with normalized plane-wave data, 76th Annual Conference and Exhibition, EAGE, Expanded abstracts.
  34. Lailly P., 1983, The seismic inverse problem as a sequence of before stack migrations, In Conference on Inverse Scattering: Theory and Application, Society for Industrial and Applied Mathematics, Philadelphia, PA, 206-220.
  35. Lee, K. H., and Kim, H. J., 2003, Source-independent fullwaveform inversion of seismic data, Geophysics, 68, 2010-2015. https://doi.org/10.1190/1.1635054
  36. Lee, K. H., Jang, H., Jang, H., and Kim, H., 2011, Sensitivity analysis of marine controlled-source electromagnetic methods to a shallow gas-hydrate layer with 1D forward modeling, Geosciences Journal, 15, 297-303. https://doi.org/10.1007/s12303-011-0030-z
  37. Menke W., 1984, Geophysical Data Analysis: Discrete Inverse Theory, Academic Press Inc.
  38. Moorkamp, M., Roberts, A. W., Jegen, M., Heincke, B., and Hobbs, R. W., 2013, Verification of velocity-resistivity relationships derived from structural joint inversion with borehole data, Geophysical Research Letters, 40, 3596-3601. https://doi.org/10.1002/grl.50696
  39. Noh, K., Kang, S., Seol, S. J., and Byun, J., 2012, Computation of apparent resistivity from marine controlled-source electromagnetic data for identifying the geometric distribution of gas hydrate, Jigu-Mulli-wa-Mulli-Tamsa, 15, 75-84. https://doi.org/10.7582/GGE.2012.15.2.075
  40. Pratt, R. G., and M. H. Worthington, 1990, Inverse theory applied to multi-source cross-hole tomography. Part 1: Acoustic waveequation method, Geophysical Prospecting, 38, 287-310. https://doi.org/10.1111/j.1365-2478.1990.tb01846.x
  41. Scales, J. A., and Gersztenkorn, A., 1988, Robust methods in inverse theory, Inverse Problems, 4, 1071-1091. https://doi.org/10.1088/0266-5611/4/4/010
  42. Shin, C., and Min, D. J., 2006, Waveform inversion using a logarithmic wavefield, Geophysics, 71, R31-R42. https://doi.org/10.1190/1.2194523
  43. Sirgue, L., and Pratt, R. G., 2004, Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies, Geophysics, 69, pp. 231-248. https://doi.org/10.1190/1.1649391
  44. Son, W., Pyun, S., Jang, D., and Park, Y., 2012, A study on optimization of the global-correlation-based objective function for the simultaneous-source full waveform inversion with streamer-type data, Jigu-Mulli-wa-Mulli-Tamsa, 15, 129-135. https://doi.org/10.7582/GGE.2012.15.3.129
  45. Tao, Y., and Sen, M. K., 2013, Frequency-domain full waveform inversion with plane-wave data: Geophysics, 78, R13-R23. https://doi.org/10.1190/geo2012-0267.1
  46. Tarantola A., 1984, Inversion of seismic reflection data in the acoustic approximation, Geophysics, 49, 1259-1266. https://doi.org/10.1190/1.1441754
  47. Tryggvason, A., and Linde, N., 2006, Local earthquake (LE) tomography with joint inversion for P- and S-wave velocities using structural constraints, Geophysical Research Letters, 33, L07303.
  48. Um, E., Commer, M., and Newman, G., 2014, A strategy for coupled 3D imaging of large-scale seismic and electromagnetic data sets: Application to subsalt imaging, Geophysics, 79, ID1-ID13. https://doi.org/10.1190/geo2013-0053.1
  49. van den Berg, P. M., and Abubakar, A., 2001, Contrast source inversion method: State of art, Progress in Electromagnetic Research, 34, 189-218. https://doi.org/10.2528/PIER01061103
  50. van den Berg, P. M., Abubakar, A., and Fokkema, J. T., 2003, Multiplicative regularization for contrast profile inversion, Radio Science, 38, 23.1-23.10.
  51. Virieux, J., and Operto, S., 2009, An overview of full-waveform inversion in exploration geophysics, Geophysics, 74, WCC1-WCC26. https://doi.org/10.1190/1.3238367
  52. Waxman, M. H., and Smits, M. J. L., 1968, Electrical conductivities in oilbearing shaly sands, SPE Journal, 8, 107-122. https://doi.org/10.2118/1863-A
  53. Yi, M. J., Kim, J. H., and Chung, S. H., 2003, Enhancing the resolving power of least-squares inversion with active constraint balancing, Geophysics, 68, 931-941. https://doi.org/10.1190/1.1581045