DOI QR코드

DOI QR Code

Backscattering strength and vertical distribution of dominant fishes in inland waters by hydroacoustics

음향기술을 이용한 내수면 주요어종의 음향산란특성과 연직분포

  • Received : 2014.10.07
  • Accepted : 2014.11.19
  • Published : 2014.11.30

Abstract

This study is aimed to understand the vertical distribution of fish in the daytime and nighttime using an acoustic survey in Yondam reservoir of Jeollabuk-do, and an acoustical backscattering strength of dominant species, bass (Micropterus salmoides) and a bluegill (Lepomis macrochirus), which are classified as the ecosystem disturbing species. The results showed that the fish school was distributed in the shallow areas of less than 10 m depth during the period of Aug. and Oct. where it had a strong thermocline, otherwise, it was distributed over 10-times density under stable water temperatures as $13^{\circ}C$ in Nov. There was no vertical patchiness difference between daytime and nighttime unlike the typical marine ecosystem. The dominant species were crucian carp, bluegill, bass. The hydroacoustic method can provide the spatial distribution and effective removal ways of the ecosystem disturbing species in inland fisheries.

Keywords

Backscattering strength;Hydroacoustic survey;Yongdam reservoir;Scientific echosounder;Vertical distribution

References

  1. De Robertis A and Jaffe JS. 2000. Size-dependent visual predation risk and the timing of vertical migration in zooplankton. Limnol Oceanogr 45(8), 1838-1844 (DOI: 10.4319/lo.2000.45.8.1838). https://doi.org/10.4319/lo.2000.45.8.1838
  2. Ashjian CJ, Smith SL, Flagg CN and Wilson C. 1998. Patterns and occurrence of diel vertical migration of zooplankton biomass in the Mid-Atalantic Bight described by an acoustic Doppler current profiler. Cont Shelf Res 18, 831-858 (DOI:10.1016/s0278-4343(98)00019-3). https://doi.org/10.1016/S0278-4343(98)00019-3
  3. Burrows MT and Tarling G. 2004. Effects of density dependence on diel vertical migration of populations of northern krill: a genetic algorithm model. Mar Ecol Progr Ser 277, 209-220 (DOI: 10.3354/meps277209). https://doi.org/10.3354/meps277209
  4. Clay CS and Horne JK. 1994. Acoustical models of fish: The atlantic cod(Gadua morhua). J Acoust Soc Am 96(3), 1661-1668 (DOI:10.1121/1.410245). https://doi.org/10.1121/1.410245
  5. Foote KG. 1985. Rather-high-frequency sound scattered by swimbladdered fish. J Acoust Soc Am 78, 688-700 (DOI:10.1121/1.392438). https://doi.org/10.1121/1.392438
  6. Godlewska M and Jelonek M. 2006. Acoustical estimates of fish and zooplankton distribution in the Piaseczno reservoir, Southern Poland. Aquat Ecol 40, 211-219 (DOI: 10.1007/s10452-004-3525-0). https://doi.org/10.1007/s10452-004-3525-0
  7. Holzman R and Genin A. 2003. Zooplankton by a nocturnal coral-reef fish: Effects of light, flow, and prey density. Limnol Oceanogr 48(4), 1367-1375 (DOI: 10.4319/lo.2003.48.4.1367). https://doi.org/10.4319/lo.2003.48.4.1367
  8. Goss C, Middleton D and Rodhouse P. 2001. Investigations of squid stocks using acoustic survey methods. Fish Res 54, 111-121 (DOI: 10.1016/s0165-7836(01)00375-7). https://doi.org/10.1016/S0165-7836(01)00375-7
  9. Gliwicz MZ. 1986. Predation and the evolution of vertical migration in zooplankton. Nature 320(24), 746-748 (DOI:10.1038/320746a0). https://doi.org/10.1038/320746a0
  10. Haney JF. 1988. Diel patterns of zooplankton behavior. Bull mar sci 43(3), 583-603.
  11. Jo HJ and Lee KH. 2010. Measurement of vertical migration speed of Sound Scattering Layer using an bottom mooring type Acoustic Doppler Current Profiler. J Kor Soc Fish Tech 46(4), 449-457 (DOI: 10.3796/KSFT.2010.46.4.449). https://doi.org/10.3796/KSFT.2010.46.4.449
  12. Jurvelius J, Knudsen FR, Balk H, Marjomaki TJ, Peltonen H, Taskinen J, Tuomaala A and Viljanen M. 2008. Echo-sounding can discriminate between fish and macroinvertebrates in fresh water. Fresh Biol 53, 912-923 (DOI: 10.1111/j.1365-2427.2007.01944.x). https://doi.org/10.1111/j.1365-2427.2007.01944.x
  13. Kang M. 2012. Acoustic method for discriminating plankton from fish in Lake Dom Helvecio of Brazil using a time varied threshold. J Kor Soc Fish Tech 48(4), 495-503 (DOI:10.3796/ksft.2012.48.4.495). https://doi.org/10.3796/KSFT.2012.48.4.495
  14. Knudsen FR and Larsson P. 2009. Discriminating the diel vertical migration of fish and Chaoborus flavicans larvae in a lake using a dual-frequency echo sounder. Aqua Liv Resour 22, 273-280 (DOI: 10.1051/alr/2009029). https://doi.org/10.1051/alr/2009029
  15. Knudsen FR, Larssonb P and Jakobsenb PJ. 2006. Acoustic scattering from a larval insect (Chaoborus flavicans) at six echosounder frequencies: Implication for acoustic estimates of fish abundance. Fish Res 79, 84-89 (DOI: 10.1016/j.fishres.2005.11.024). https://doi.org/10.1016/j.fishres.2005.11.024
  16. Kawabata A. 2005. Target strength measurements of suspended live ommastrephid squid, Todarodes pacifica, and its application in density estimations. Fish Sci 71, 63-72 (DOI:10.1111/j.1444-2906.2005.00931.x). https://doi.org/10.1111/j.1444-2906.2005.00931.x
  17. Lee DJ. 2005. Fish length dependence of acoustic target strength for 12 dominant fish species caught in the Korean waters at 75kHz. J Kor Soc Fish Tech 41(4), 296-305 (DOI: 10.3796/ksft.2005.41.4.296). https://doi.org/10.3796/KSFT.2005.41.4.296
  18. Lee KH, Choi JH, Shin JK, Chang DS and Park SW. 2009. Acoustical backscattering strength characteristics and density estimates of Japanese common squid distributed in Yellow Sea. J Kor Soc Fish Tech 45(3), 157-164 (DOI: 10.3796/ksft.2009.45.3.157). https://doi.org/10.3796/KSFT.2009.45.3.157
  19. Pinot JM and Jansa J. 2001. Time variability of acoustic backscatter from zooplankton in the Ibiza Channel (western Mediterranean). Deep Sea Res 48, 1651-1670 (DOI:10.1016/s0967-0637(00)00095-9). https://doi.org/10.1016/S0967-0637(00)00095-9
  20. Lee SJ, Lee YW, Kim JI, Oh TY, Hwang BK, Kim BY and Lee KH. 2010. Target strength estimation of dominant species in marine ranching ground of Jeju coastal water by KRM model. J Kor Soc Fish Tech 46(2), 157-163 (DOI:10.3796/ksft.2010.46.2.157). https://doi.org/10.3796/KSFT.2010.46.2.157
  21. Luo J, Ortner PB, Forcucci D and Cummings SR. 2000. Diel vertical migration of zooplankton and mesopelagic fish in the Arabian Sea. Deep Sea Res 7, 1451-1473 (DOI: 10.1016/s0967-0645(99)00150-2). https://doi.org/10.1016/S0967-0645(99)00150-2
  22. Myriax. 2009. Echoview. Version 4.70 Myriax Software Pty Ltd, Horbart.
  23. Plueddemann A and Pinkel R. 1989. Characterization of the patterns of diel migration using a Doppler sonar. Deep Sea Res 36(4), 509-530 (DOI: 10.1016/0198-0149(89)90003-4). https://doi.org/10.1016/0198-0149(89)90003-4
  24. Rudstam LG, Knudsen FR, Balk H, Gal G, Boscarino BT and Axenrot T. 2006. Acoustic characterization of Mysis relicta at multiple frequencies. Can J Fish Aquat Sci 65, 2769-2779 (DOI: 10.1139/f08-179). https://doi.org/10.1139/F08-179
  25. Tarling GA, Matthews JBL, David P, Guerin O and Buchholz F. 2001. The swarm dynamics of northern krill (Meganyctiphanes norvegica) and pteropods (Cavolinia inflexa) during vertical migration in the Ligurian Sea observed by an acoustic Doppler current profiler. Deep Sea Res 48, 1671-1686 (DOI: 10.1016/s0967-0637(00) 00105-9). https://doi.org/10.1016/S0967-0637(00)00105-9
  26. Tan T, Kang M, Tao J, Li X and Huang D. 2011. Hydroacoustic survey of fish density, spatial distribution, and behavior upstream and downstream of the Changzhou Dam on the Pearl River, China. Fish Sci 77, 891-901 (DOI: 10.1007/s12562-011-0400-5). https://doi.org/10.1007/s12562-011-0400-5

Acknowledgement

Grant : 생태계교란 어종의 효과적 어획방안 연구

Supported by : 환경부