DOI QR코드

DOI QR Code

Microsatellite Instability of Nuclear and Mitochondrial DNAs in Gastric Carcinogenesis

  • Lee, Jae-Ho (Department of Anatomy, Keimyung University School of Medicine) ;
  • Kim, Dae-Kwang (Department of Medical Genetics, Keimyung University School of Medicine)
  • Published : 2014.10.23

Abstract

Genetic instability contributes to the development and progression of gastric cancer, one of the leading causes of cancer death worldwide. Microsatellite instability (MSI) has been hypothesized to be involved in carcinogenesis, althgough its mechanisms and exact roles in gastric cancer remain largely unknown. Our aim was to identify associated clinicopathological characteristics and prognostic value of MSI in gastric cancer and precancerous lesions including gastritis, metaplasia, dysplasia, and adenoma. Because mitochondrial DNA has a different genetic system from nuclear DNA, the results of both nuclear MSI and mitochondrial MSI in gastric cancer were reviewed. This review provides evidence that genetic instability of nuclear and mitochondrial DNAs contributes to early stages of gastric carcinogenesis and suggests possible roles in predicting prognosis.

Keywords

Gastric cancer;dysplasia;metaplasia;microsatellite instability;mitochondrial microsatellite instability

References

  1. Vauhkonen M, Vauhkonen H, Sajantila A, Sipponen P (2005). Differences in genomic instability between intestinal- and diffuse-type gastric cancer. Gastric Cancer, 8, 238-44. https://doi.org/10.1007/s10120-005-0346-3
  2. Suraweera N, Duval A, Reperant M, et al (2002). Evaluation of tumor microsatellite instability using five quasimonomorphic mononucleotide repeats and pentaplex PCR. Gastroenterology, 123, 1804-11. https://doi.org/10.1053/gast.2002.37070
  3. Tohdo H, Yokozaki H, Haruma K, et al (1993). p53 gene mutations in gastric adenomas. Virchows Arch B Cell Pathol Incl Mol Pathol, 63, 191-5. https://doi.org/10.1007/BF02899260
  4. Umar A, Boland CR, Terdiman JP, et al (2004). Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst, 96, 261-8. https://doi.org/10.1093/jnci/djh034
  5. Wang F, Sun GP, Zou YF, et al (2012). MicroRNAs as promising biomarkers for gastric cancer. Cancer Biomark, 11, 259-67.
  6. Wang Y, Liu VW, Ngan HY, Nagley P (2005). Frequent occurrence of mitochondrial microsatellite instability in the D-loop region of human cancers. Ann N Y Acad Sci, 1042, 123-9. https://doi.org/10.1196/annals.1338.012
  7. Yashiro M, Inoue T, Nishioka N, et al (2009). Allelic imbalance at p53 and microsatellite instability are predictive markers for resistance to chemotherapy in gastric carcinoma. Ann Surg Oncol, 16, 2926-35. https://doi.org/10.1245/s10434-009-0590-6
  8. Wen SL, Zhang F, Feng S (2013). Decreased copy number of mitochondrial DNA: A potential diagnostic criterion for gastric cancer. Oncol Lett, 6, 1098-102.
  9. Wirtz HC, Muller W, Noguchi T, et al (1998). Prognostic value and clinicopathological profile of microsatellite instability in gastric cancer. Clin Cancer Res, 4, 1749-54.
  10. Wu CW, Yin PH, Hung WY, et al (2005). Mitochondrial DNA mutations and mitochondrial DNA depletion in gastric cancer. Genes Chromosomes Cancer, 44, 19-28. https://doi.org/10.1002/gcc.20213
  11. Yasui W, Oue N, Aung PP, et al (2005). Molecular-pathological prognostic factors of gastric cancer: a review. Gastric Cancer, 8, 86-94. https://doi.org/10.1007/s10120-005-0320-0
  12. Yin PH, Lee HC, Chau GY, et al (2004). Alteration of the copy number and deletion of mitochondrial DNA in human hepatocellular carcinoma. Br J Cancer, 90, 2390-6.
  13. Zaky AH, Watari J, Tanabe H, et al (2008). Clinicopathologic implications of genetic instability in intestinal-type gastric cancer and intestinal metaplasia as a precancerous lesion: proof of field cancerization in the stomach. Am J Clin Pathol, 129, 613-21. https://doi.org/10.1309/DFLELPGPNV5LK6B1
  14. Zhao YB, Yang HY, Zhang XW, Chen GY (2005). Mutation in D-loop region of mitochondrial DNA in gastric cancer and its significance. World J Gastroenterol, 11, 3304-6. https://doi.org/10.3748/wjg.v11.i21.3304
  15. Zsurka G, Kunz WS (2013). Mitochondrial involvement in neurodegenerative diseases. IUBMB Life, 65, 263-72. https://doi.org/10.1002/iub.1126
  16. Ottini L, Palli D, Falchetti M, et al (1997). Microsatellite instability in gastric cancer is associated with tumor location and family history in a high-risk population from Tuscany. Cancer Res, 57, 4523-9.
  17. Rigoli L, Di Bella C, Verginelli F, et al (2008). Histological heterogeneity and somatic mtDNA mutations in gastric intraepithelial neoplasia. Mod Pathol, 21, 733-41. https://doi.org/10.1038/modpathol.2008.58
  18. Park HJ, Kim HS, Kim JW, et al (2013). Is microsatellite instability (MSI) associated with multiplicity in early stage gastric neoplasias? Clin Res Hepatol Gastroenterol, 37, 400-5. https://doi.org/10.1016/j.clinre.2012.10.010
  19. Parsonnet J, Vandersteen D, Goates J, et al (1991). Helicobacter pylori infection in intestinal- and diffuse-type gastric adenocarcinomas. J Natl Cancer Inst, 83, 640-3. https://doi.org/10.1093/jnci/83.9.640
  20. Richard SM, Bailliet G, Paez GL, et al (2000). Nuclear and mitochondrial genome instability in human breast cancer. Cancer Res, 60, 4231-7.
  21. Risinger JI, Berchuck A, Kohler MF, et al (1993). Genetic instability of microsatellites in endometrial carcinoma. Cancer Res, 53, 5100-3.
  22. Sanchez-Cespedes M, Parrella P, Nomoto S, et al (2001). Identification of a mononucleotide repeat as a major target for mitochondrial DNA alterations in human tumors. Cancer Res, 61, 7015-9.
  23. Sasao S, Hiyama T, Tanaka S, et al (2006). Clinicopathologic and genetic characteristics of gastric cancer in young male and female patients. Oncol Rep, 16, 11-5.
  24. Sbisa E, Tanzariello F, Reyes A, et al (1997). Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications. Gene, 205, 125-40. https://doi.org/10.1016/S0378-1119(97)00404-6
  25. Schneider BG, Bravo JC, Roa JC, et al (2000). Microsatellite instability, prognosis and metastasis in gastric cancers from a low-risk population. Int J Cancer, 89, 444-52. https://doi.org/10.1002/1097-0215(20000920)89:5<444::AID-IJC8>3.0.CO;2-F
  26. Semba S, Yokozaki H, Yamamoto S, et al (1996). Microsatellite instability in precancerous lesions and adenocarcinomas of the stomach. Cancer, 77, 1620-7. https://doi.org/10.1002/(SICI)1097-0142(19960415)77:8+<1620::AID-CNCR6>3.0.CO;2-H
  27. Strong VE, Song KY, Park CH, et al (2010). Comparison of gastric cancer survival following R0 resection in the United States and Korea using an internationally validated nomogram. Ann Surg, 251, 640-6. https://doi.org/10.1097/SLA.0b013e3181d3d29b
  28. Shah MA, Khanin R, Tang L, et al (2011). Molecular classification of gastric cancer: a new paradigm. Clin Cancer Res, 17, 2693-701. https://doi.org/10.1158/1078-0432.CCR-10-2203
  29. Shokal U, Sharma PC (2012). Implication of microsatellite instability in human gastric cancers. Indian J Med Res, 135, 599-613.
  30. Strand M, Prolla TA, Liskay RM, Petes TD (1993). Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature, 365, 274-6. https://doi.org/10.1038/365274a0
  31. Sui G, Zhou S, Wang J, et al (2006). Mitochondrial DNA mutations in preneoplastic lesions of the gastrointestinal tract: a biomarker for the early detection of cancer. Mol Cancer, 5, 73. https://doi.org/10.1186/1476-4598-5-73
  32. Liao LM, Baccarelli A, Shu XO, et al (2011). Mitochondrial DNA copy number and risk of gastric cancer: a report from the Shanghai women's health study. Cancer Epidemiol Biomarkers Prev, 20, 1944-9. https://doi.org/10.1158/1055-9965.EPI-11-0379
  33. Ling XL, Fang DC, Wang RQ, et al (2004). Mitochondrial microsatellite instability in gastric cancer and its precancerous lesions. World J Gastroenterol, 10, 800-3.
  34. Liu P, Zhang XY, Shao Y, Zhang DF (2005). Microsatellite instability in gastric cancer and pre-cancerous lesions. World J Gastroenterol, 11, 4904-7.
  35. Machado AM, Desler C, Boggild S, et al (2013). Helicobacter pylori infection affects mitochondrial function and DNA repair, thus, mediating genetic instability in gastric cells. Mech Ageing Dev, 134, 460-6. https://doi.org/10.1016/j.mad.2013.08.004
  36. Machado AM, Figueiredo C, Seruca R, Rasmussen LJ (2010). Helicobacter pylori infection generates genetic instability in gastric cells. Biochim Biophys Acta, 1806, 58-65.
  37. Murphy KM, Zhang S, Geiger T, et al (2006). Comparison of the microsatellite instability analysis system and the Bethesda panel for the determination of microsatellite instability in colorectal cancers. J Mol Diagn, 8, 305-11. https://doi.org/10.2353/jmoldx.2006.050092
  38. Machado AM, Figueiredo C, Touati E, et al (2009). Helicobacter pylori infection induces genetic instability of nuclear and mitochondrial DNA in gastric cells. Clin Cancer Res, 15, 2995-3002. https://doi.org/10.1158/1078-0432.CCR-08-2686
  39. Mambo E, Gao X, Cohen Y, et al (2003). Electrophile and oxidant damage of mitochondrial DNA leading to rapid evolution of homoplasmic mutations. Proc Natl Acad Sci U S A, 100, 1838-43. https://doi.org/10.1073/pnas.0437910100
  40. Maximo V, Soares P, Seruca R, et al (2001). Microsatellite instability, mitochondrial DNA large deletions, and mitochondrial DNA mutations in gastric carcinoma. Genes Chromosomes Cancer, 32, 136-43. https://doi.org/10.1002/gcc.1175
  41. Najjar Sadeghi R, Damavand B, Vahedi M, et al (2013). Detection of p53 common intron polymorphisms in patients with gastritis lesions from Iran. Asian Pac J Cancer Prev, 14, 91-6. https://doi.org/10.7314/APJCP.2013.14.1.91
  42. Nobili S, Bruno L, Landini I, et al (2011). Genomic and genetic alterations influence the progression of gastric cancer. World J Gastroenterol, 17, 290-9. https://doi.org/10.3748/wjg.v17.i3.290
  43. Ohara T, Kasanuki J, Ohara H, et al (2006). Analysis of the differences in structural chromosomal aberrations of the gastric mucosa between H. pylori positive and negative gastric cancer patients: involvement of H. pylori in the onset of gastric cancer and examination of the mechanism in gastric carcinogenesis following H. pylori eradication. Oncol Rep, 16, 1333-42.
  44. Oki E, Kakeji Y, Zhao Y, et al (2009). Chemosensitivity and survival in gastric cancer patients with microsatellite instability. Ann Surg Oncol, 16, 2510-5. https://doi.org/10.1245/s10434-009-0580-8
  45. Lengauer C, Kinzler KW, Vogelstein B (1998). Genetic instabilities in human cancers. Nature, 396, 643-9. https://doi.org/10.1038/25292
  46. Howell N, Kubacka I, Mackey DA (1996). How rapidly does the human mitochondrial genome evolve? Am J Hum Genet, 59, 501-9.
  47. Leung WK, Kim JJ, Kim JG, et al (2000). Microsatellite instability in gastric intestinal metaplasia in patients with and without gastric cancer. Am J Pathol, 156, 537-43. https://doi.org/10.1016/S0002-9440(10)64758-X
  48. Hiyama T, Tanaka S, Shima H, et al (2003). Somatic mutation of mitochondrial DNA in Helicobacter pylori-associated chronic gastritis in patients with and without gastric cancer. Int J Mol Med, 12, 169-74.
  49. Hoang JM, Cottu PH, Thuille B, et al (1997). BAT-26, an indicator of the replication error phenotype in colorectal cancers and cell lines. Cancer Res, 57, 300-3.
  50. Hudler P (2012). Genetic aspects of gastric cancer instability. ScientificWorldJournal, 2012, 761909.
  51. Jeong CW, Lee JH, Sohn SS, et al (2010). Mitochondrial microsatellite instability in gastric cancer and gastric epithelial dysplasia as a precancerous lesion. Cancer Epidemiol, 34, 323-7. https://doi.org/10.1016/j.canep.2010.03.015
  52. Jin Z, Tamura G, Satoh M, et al (2001). Absence of BAT-26 instability in gastric intestinal metaplasia. Pathol Int, 51, 473-5. https://doi.org/10.1046/j.1440-1827.2001.01220.x
  53. Jun KH, Kim SY, Yoon JH, et al (2012). Amplification of the UQCRFS1 Gene in Gastric Cancers. J Gastric Cancer, 12, 73-80. https://doi.org/10.5230/jgc.2012.12.2.73
  54. Jung KW, Park S, Kong HJ, et al (2012). Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2009. Cancer Res Treat, 44, 11-24. https://doi.org/10.4143/crt.2012.44.1.11
  55. Kashiwagi K, Watanabe M, Ezaki T, et al (2000). Clinical usefulness of microsatellite instability for the prediction of gastric adenoma or adenocarcinoma in patients with chronic gastritis. Br J Cancer, 82, 1814-8. https://doi.org/10.1054/bjoc.1999.1154
  56. Kim H, An JY, Noh SH, et al (2011). High microsatellite instability predicts good prognosis in intestinal-type gastric cancers. J Gastroenterol Hepatol, 26, 585-92. https://doi.org/10.1111/j.1440-1746.2010.06487.x
  57. Lee HC, Li SH, Lin JC, et al (2004). Somatic mutations in the D-loop and decrease in the copy number of mitochondrial DNA in human hepatocellular carcinoma. Mutat Res, 547, 71-8. https://doi.org/10.1016/j.mrfmmm.2003.12.011
  58. Kim HS, Woo DK, Bae SI, et al (2000). Microsatellite instability in the adenoma-carcinoma sequence of the stomach. Lab Invest, 80, 57-64. https://doi.org/10.1038/labinvest.3780008
  59. Kim SS, Bhang CS, Min KO, et al (2002). p53 mutations and microsatellite instabilities in the subtype of intestinal metaplasia of the stomach. J Korean Med Sci, 17, 490-6. https://doi.org/10.3346/jkms.2002.17.4.490
  60. Kobayashi K, Okamoto T, Takayama S, et al (2000). Genetic instability in intestinal metaplasia is a frequent event leading to well-differentiated early adenocarcinoma of the stomach. Eur J Cancer, 36, 1113-9. https://doi.org/10.1016/S0959-8049(00)00066-6
  61. Lee JH, Abraham SC, Kim HS, et al (2002). Inverse relationship between APC gene mutation in gastric adenomas and development of adenocarcinoma. Am J Pathol, 161, 611-8. https://doi.org/10.1016/S0002-9440(10)64216-2
  62. Lee JH, Park SJ, Abraham SC, et al (2004). Frequent CpG island methylation in precursor lesions and early gastric adenocarcinomas. Oncogene, 23, 4646-54. https://doi.org/10.1038/sj.onc.1207588
  63. Lee S, Shin MG, Jo WH, et al (2007). Association between Helicobacter pylori-related peptic ulcer tissue and somatic mitochondrial DNA mutations. Clin Chem, 53, 1390-2. https://doi.org/10.1373/clinchem.2007.088047
  64. Endoh Y, Sakata K, Tamura G, et al (2000). Cellular phenotypes of differentiated-type adenocarcinomas and precancerous lesions of the stomach are dependent on the genetic pathways. J Pathol, 191, 257-63. https://doi.org/10.1002/1096-9896(2000)9999:9999<::AID-PATH631>3.0.CO;2-2
  65. Fang WL, Chang SC, Lan YT, et al (2012). Microsatellite instability is associated with a better prognosis for gastric cancer patients after curative surgery. World J Surg, 36, 2131-8. https://doi.org/10.1007/s00268-012-1652-7
  66. Garay J, Bravo JC, Correa P, Schneider BG (2004). Infrequency of microsatellite instability in complete and incomplete gastric intestinal metaplasia. Hum Pathol, 35, 102-6. https://doi.org/10.1016/j.humpath.2003.08.023
  67. Ferrasi AC, Pinheiro NA, Rabenhorst SH, et al (2010). Helicobacter pylori and EBV in gastric carcinomas: methylation status and microsatellite instability. World J Gastroenterol, 16, 312-9. https://doi.org/10.3748/wjg.v16.i3.312
  68. Fleisher AS, Esteller M, Tamura G, et al (2001). Hypermethylation of the hMLH1 gene promoter is associated with microsatellite instability in early human gastric neoplasia. Oncogene, 20, 329-35. https://doi.org/10.1038/sj.onc.1204104
  69. Forman D, Newell DG, Fullerton F, et al (1991). Association between infection with Helicobacter pylori and risk of gastric cancer: evidence from a prospective investigation. BMJ, 302, 1302-5. https://doi.org/10.1136/bmj.302.6788.1302
  70. Gargano G, Calcara D, Corsale S, et al (2007). Aberrant methylation within RUNX3 CpG island associated with the nuclear and mitochondrial microsatellite instability in sporadic gastric cancers. results of a goim (gruppo oncologico dell'Italia meridionale) prospective study. Ann Oncol, 6, 103-9.
  71. Giles RE, Blanc H, Cann HM, Wallace DC (1980). Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci U S A, 77, 6715-9. https://doi.org/10.1073/pnas.77.11.6715
  72. Grabsch HI, Tan P (2013). Gastric cancer pathology and underlying molecular mechanisms. Dig Surg, 30, 150-8. https://doi.org/10.1159/000350876
  73. Guo W, Yang D, Xu H, et al (2013). Mutations in the D-loop region and increased copy number of mitochondrial DNA in human laryngeal squamous cell carcinoma. Mol Biol Rep, 40, 13-20. https://doi.org/10.1007/s11033-012-1939-7
  74. Habano W, Sugai T, Nakamura SI, et al (2000). Microsatellite instability and mutation of mitochondrial and nuclear DNA in gastric carcinoma. Gastroenterology, 118, 835-41. https://doi.org/10.1016/S0016-5085(00)70169-7
  75. Hayden JD, Martin IG, Cawkwell L, Quirke P (1998). The role of microsatellite instability in gastric carcinoma. Gut, 42, 300-3. https://doi.org/10.1136/gut.42.2.300
  76. Hamamoto T, Yokozaki H, Semba S, et al (1997). Altered microsatellites in incomplete-type intestinal metaplasia adjacent to primary gastric cancers. J Clin Pathol, 50, 841-6. https://doi.org/10.1136/jcp.50.10.841
  77. Hamilton JP, Meltzer SJ (2006). A review of the genomics of gastric cancer. Clin Gastroenterol Hepatol, 4, 416-25. https://doi.org/10.1016/j.cgh.2006.01.019
  78. Hayden JD, Cawkwell L, Quirke P, et al (1997). Prognostic significance of microsatellite instability in patients with gastric carcinoma. Eur J Cancer, 33, 2342-6. https://doi.org/10.1016/S0959-8049(97)00343-2
  79. He Y, Wu J, Dressman DC, et al (2010). Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature, 464, 610-4. https://doi.org/10.1038/nature08802
  80. Aaltonen LA, Peltomaki P, Leach FS, et al (1993). Clues to the pathogenesis of familial colorectal cancer. Science, 260, 812-6. https://doi.org/10.1126/science.8484121
  81. Alonso A, Martin P, Albarran C, et al (1997). Detection of somatic mutations in the mitochondrial DNA control region of colorectal and gastric tumors by heteroduplex and singlestrand conformation analysis. Electrophoresis, 18, 682-5. https://doi.org/10.1002/elps.1150180504
  82. An C, Choi IS, Yao JC, et al (2005). Prognostic significance of CpG island methylator phenotype and microsatellite instability in gastric carcinoma. Clin Cancer Res, 11, 656-63.
  83. An JY, Kim H, Cheong JH, et al (2012). Microsatellite instability in sporadic gastric cancer: its prognostic role and guidance for 5-FU based chemotherapy after R0 resection. Int J Cancer, 131, 505-11. https://doi.org/10.1002/ijc.26399
  84. Ashtiani ZO, Heidari M, Hasheminasab SM, Ayati M, Rakhshani N (2012). Mitochondrial D-Loop polymorphism and microsatellite instability in prostate cancer and benign hyperplasia patients. Asian Pac J Cancer Prev, 13, 3863-8. https://doi.org/10.7314/APJCP.2012.13.8.3863
  85. Beghelli S, de Manzoni G, Barbi S, et al (2006). Microsatellite instability in gastric cancer is associated with better prognosis in only stage II cancers. Surgery, 139, 347-56. https://doi.org/10.1016/j.surg.2005.08.021
  86. Arai T, Takubo K (2007). Clinicopathological and molecular characteristics of gastric and colorectal carcinomas in the elderly. Pathol Int, 57, 303-14. https://doi.org/10.1111/j.1440-1827.2007.02101.x
  87. Bacher JW, Flanagan LA, Smalley RL, et al (2004). Development of a fluorescent multiplex assay for detection of MSI-High tumors. Dis Markers, 20, 237-50. https://doi.org/10.1155/2004/136734
  88. Bates MG, Bourke JP, Giordano C, et al (2012). Cardiac involvement in mitochondrial DNA disease: clinical spectrum, diagnosis, and management. Eur Heart J, 33, 3023-33. https://doi.org/10.1093/eurheartj/ehs275
  89. Belien JA, Buffart TE, Gill AJ, et al (2009). Gross genomic damage measured by DNA image cytometry independently predicts gastric cancer patient survival. Br J Cancer, 101, 1011-8. https://doi.org/10.1038/sj.bjc.6605266
  90. Bianchi NO, Bianchi MS, Richard SM (2001). Mitochondrial genome instability in human cancers. Mutat Res, 488, 9-23. https://doi.org/10.1016/S1383-5742(00)00063-6
  91. Boland CR, Thibodeau SN, Hamilton SR, et al (1998). A national cancer institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res, 58, 5248-57.
  92. Buermeyer AB, Deschenes SM, Baker SM, Liskay RM (1999). Mammalian DNA mismatch repair. Annu Rev Genet, 33, 533-64. https://doi.org/10.1146/annurev.genet.33.1.533
  93. Buhard O, Cattaneo F, Wong YF, et al (2006). Multipopulation analysis of polymorphisms in five mononucleotide repeats used to determine the microsatellite instability status of human tumors. J Clin Oncol, 24, 241-51.
  94. Burgart LJ, Zheng J, Shu Q, et al (1995). Somatic mitochondrial mutation in gastric cancer. Am J Pathol, 147, 1105-11.
  95. Coller HA, Khrapko K, Bodyak ND, et al (2001). High frequency of homoplasmic mitochondrial DNA mutations in human tumors can be explained without selection. Nat Genet, 28, 147-50. https://doi.org/10.1038/88859
  96. Chang MS, Kim HS, Kim CW, et al (2002). Epstein-barr virus, p53 protein, and microsatellite instability in the adenomacarcinoma sequence of the stomach. Hum Pathol, 33, 415-20. https://doi.org/10.1053/hupa.2002.124718
  97. Chiaravalli AM, Feltri M, Bertolini V, et al (2006). Intratumour T cells, their activation status and survival in gastric carcinomas characterised for microsatellite instability and epstein-barr virus infection. Virchows Arch, 448, 344-53. https://doi.org/10.1007/s00428-005-0066-4
  98. Chinnery PF, Samuels DC, Elson J, Turnbull DM (2002). Accumulation of mitochondrial DNA mutations in ageing, cancer, and mitochondrial disease: is there a common mechanism? Lancet, 360, 1323-5. https://doi.org/10.1016/S0140-6736(02)11310-9
  99. Correa P, Haenszel W, Cuello C, et al (1975). A model for gastric cancer epidemiology. Lancet, 2, 58-60.
  100. Corso G, Pedrazzani C, Marrelli D, et al (2009). Correlation of microsatellite instability at multiple loci with long-term survival in advanced gastric carcinoma. Arch Surg, 144, 722-7. https://doi.org/10.1001/archsurg.2009.42
  101. Dai JG, Zhang ZY, Liu QX, Min JX (2013). Mitochondrial genome microsatellite instability and copy number alteration in lung carcinomas. Asian Pac J Cancer Prev, 14, 2393-9. https://doi.org/10.7314/APJCP.2013.14.4.2393
  102. Dunbar DR, Moonie PA, Jacobs HT, Holt IJ (1995). Different cellular backgrounds confer a marked advantage to either mutant or wild-type mitochondrial genomes. Proc Natl Acad Sci U S A, 92, 6562-6. https://doi.org/10.1073/pnas.92.14.6562