DOI QR코드

DOI QR Code

Promyelocytic Leukemia Gene Functions and Roles in Tumorigenesis

  • Imani-Saber, Zeinab (Department of Medical Genetics, Shahid Beheshti University of Medical Sciences) ;
  • Ghafouri-Fard, Soudeh (Department of Medical Genetics, Shahid Beheshti University of Medical Sciences)
  • Published : 2014.10.23

Abstract

The promyelocytic leukemia (PML) gene is a gene known to be a tumor suppressor, although recent data suggest that it has a dual function in tumorigenesis. It was initially discovered in acute promyelocytic leukemia (APL) in which a t(15; 17) chromosomal translocation fused it to the retinoic acid receptor alpha ($RAR{\alpha}$). It has been shown to be involved in various types of cancer. It has at least 6 nuclear isoforms and a cytoplasmic type with different characteristics. Its multiple functions in growth inhibition, apoptosis induction, replicative senescence, inhibition of oncogenic transformation, and suppression of migration and angiogenesis have made it a therapeutic target for cancer therapy. However, its dual role in the process of tumorigenesis has made this field challenging. In this review, we discuss PML structure, functions and expression in tumors.

Keywords

PML;cancers;structure;nuclear bodies;functions and;physiological roles

References

  1. Bischof O, Kirsh O, Pearson M, et al (2002). Deconstructing PML-induced premature senescence. Embo J, 21, 3358-69. https://doi.org/10.1093/emboj/cdf341
  2. Ben-Baruch A (2006). The multifaceted roles of chemokines in malignancy. Cancer Metastasis Rev, 25, 357-71. https://doi.org/10.1007/s10555-006-9003-5
  3. Bernardi R, Guernah I, Jin D, et al (2006). PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR. Nature, 442, 779-85. https://doi.org/10.1038/nature05029
  4. Bernardi R, Pandolfi PP (2007). Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol, 8, 1006-16. https://doi.org/10.1038/nrm2277
  5. Best JL, Ganiatsas S, Agarwal S, et al (2002). SUMO-1 protease-1 regulates gene transcription through PML. Mol Cell, 10, 843-55. https://doi.org/10.1016/S1097-2765(02)00699-8
  6. Carbone R, Pearson M, Minucci S, et al (2002). PML NBs associate with the hMre11 complex and p53 at sites of irradiation induced DNA damage. Oncogene, 21, 1633-40. https://doi.org/10.1038/sj.onc.1205227
  7. Chen RH, Lee YR, Yuan WC (2012). The role of PML ubiquitination in human malignancies. J Biomed Sci, 19, 81. https://doi.org/10.1186/1423-0127-19-81
  8. Carracedo A, Weiss D, Leliaert AK, et al (2012). A metabolic prosurvival role for< i> PML in breast cancer. J clin Invest, 122, 3088-100. https://doi.org/10.1172/JCI62129
  9. Chang CC, Naik MT, Huang YS, et al (2011). Structural and functional roles of Daxx SIM phosphorylation in SUMO paralog-selective binding and apoptosis modulation. Mol Cell, 42, 62-74. https://doi.org/10.1016/j.molcel.2011.02.022
  10. Chelbi-Alix M, Pelicano L, Quignon F, et al (1995). Induction of the PML protein by interferons in normal and APL cells. Leukemia, 9, 2027-33.
  11. Cooke HJ, Smith BA (1986). Variability at the telomeres of the human X/Y pseudoautosomal region. Cold Spring Harb Symp Quant Biol, 51, 213-9. https://doi.org/10.1101/SQB.1986.051.01.026
  12. Cuchet-Lourenco D, Vanni E, Glass M, et al (2012). Herpes simplex virus 1 ubiquitin ligase ICP0 interacts with PML isoform I and induces its SUMO-independent degradation. J Virol, 86, 11209-22. https://doi.org/10.1128/JVI.01145-12
  13. de Stanchina E, Querido E, Narita M, et al (2004). PML is a direct p53 target that modulates p53 effector functions. Molecular cell, 13, 523-35. https://doi.org/10.1016/S1097-2765(04)00062-0
  14. de The H CC, Lanotte M, Degos L, Dejean A (1990). The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Natur, 347, 558-61. https://doi.org/10.1038/347558a0
  15. de Visser KE, Coussens LM (2006). The inflammatory tumor microenvironment and its impact on cancer development. Contrib Microbiol, 13, 118-37.
  16. Dellaire G, Ching RW, Ahmed K, et al (2006b). Promyelocytic leukemia nuclear bodies behave as DNA damage sensors whose response to DNA double-strand breaks is regulated by NBS1 and the kinases ATM, Chk2, and ATR. J Cell Biol, 175, 55-66. https://doi.org/10.1083/jcb.200604009
  17. Fanelli M, Fantozzi A, De Luca P, et al (2004). The coiledcoil domain is the structural determinant for mammalian homologues of Drosophila Sina-mediated degradation of promyelocytic leukemia protein and other tripartite motif proteins by the proteasome. J Biol Chem, 279, 5374-9. https://doi.org/10.1074/jbc.M306407200
  18. Dermime S, Bertazzoli C, Marchesi E, et al (1996). Lack of T-cell-mediated recognition of the fusion region of the pml/RAR-alpha hybrid protein by lymphocytes of acute promyelocytic leukemia patients. Clin Cancer Res, 2, 593-600.
  19. Dyck JA, Maul GG, Miller WH, Jr., et al (1994). A novel macromolecular structure is a target of the promyelocyteretinoic acid receptor oncoprotein. Cell, 76, 333-43. https://doi.org/10.1016/0092-8674(94)90340-9
  20. Everett RD (2001). DNA viruses and viral proteins that interact with PML nuclear bodies. Oncogene, 20, 7266-73. https://doi.org/10.1038/sj.onc.1204759
  21. Gamell C, Jan Paul P, Haupt Y, et al (2014). PML tumour suppression and beyond: Therapeutic implications. FEBS Lett.
  22. Geoffroy MC, Jaffray EG, Walker KJ, et al (2010). Arsenicinduced SUMO-dependent recruitment of RNF4 into PML nuclear bodies. Mol Biol Cell, 21, 4227-39. https://doi.org/10.1091/mbc.E10-05-0449
  23. Ghafouri-Fard S, Ghafouri-Fard S (2012a). Immunotherapy in nonmelanoma skin cancer. Immunotherapy, 4, 499-510. https://doi.org/10.2217/imt.12.29
  24. Ghafouri-Fard S, Ghafouri-Fard S (2012b). siRNA and cancer immunotherapy. Immunotherapy, 4, 907-17. https://doi.org/10.2217/imt.12.87
  25. Ghafouri-Fard S, Modarressi MH, Yazarloo F (2012). Expression of testis-specific genes, TEX101 and ODF4, in chronic myeloid leukemia and evaluation of TEX101 immunogenicity. Ann. Saudi Med, 32, 256-61.
  26. Ghafouri-Fard S, Shamsi R, Seifi-Alan M, et al (2014). Cancertestis genes as candidates for immunotherapy in breast cancer. Immunotherapy, 6, 165-79. https://doi.org/10.2217/imt.13.165
  27. Hattersley N, Shen L, Jaffray EG, et al (2011). The SUMO protease SENP6 is a direct regulator of PML nuclear bodies. Mol Biol Cell, 22, 78-90. https://doi.org/10.1091/mbc.E10-06-0504
  28. Guan D, Factor D, Liu Y, et al (2013). The epigenetic regulator UHRF1 promotes ubiquitination-mediated degradation of the tumor-suppressor protein promyelocytic leukemia protein. Oncogene, 32, 3819-28. https://doi.org/10.1038/onc.2012.406
  29. Guo A, Salomoni P, Luo J, et al (2000). The function of PML in p53-dependent apoptosis. Nat Cell Biol, 2, 730-6. https://doi.org/10.1038/35036365
  30. Gurrieri C, Capodieci P, Bernardi R, et al (2004). Loss of the tumor suppressor PML in human cancers of multiple histologic origins. J Natl Cancer Inst, 96, 269-79. https://doi.org/10.1093/jnci/djh043
  31. Hubackova S, Krejcikova K, Bartek J, et al (2012). Interleukin 6 signaling regulates promyelocytic leukemia protein gene expression in human normal and cancer cells. J Biol Chem, 287, 26702-14. https://doi.org/10.1074/jbc.M111.316869
  32. Ishov AM, Sotnikov AG, Negorev D, et al (1999). PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J Cell Biol, 147, 221-34. https://doi.org/10.1083/jcb.147.2.221
  33. Ito K, Bernardi R, Morotti A, et al (2008). PML targeting eradicates quiescent leukaemia-initiating cells. Nature, 453, 1072-8. https://doi.org/10.1038/nature07016
  34. Jensen K, Shiels C, Freemont PS (2001). PML protein isoforms and the RBCC/TRIM motif. Oncogene, 20, 7223-33. https://doi.org/10.1038/sj.onc.1204765
  35. Jin G, Wang Y-J, Lin H-K (2013). Emerging cellular functions of cytoplasmic PML. Frontiers in oncology, 3, 147.
  36. Kakizuka A, Miller WH, Jr., Umesono K, et al (1991). Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell, 66, 663-74. https://doi.org/10.1016/0092-8674(91)90112-C
  37. Lallemand-Breitenbach V, de The H (2010). PML nuclear bodies. Cold Spring Harb Perspect Biol, 2, 000661. https://doi.org/10.1101/cshperspect.a000661
  38. Kamitani T, Kito K, Nguyen HP, et al (1998). Identification of three major sentrinization sites in PML. J Biol Chem, 273, 26675-82. https://doi.org/10.1074/jbc.273.41.26675
  39. Kim HJ, Song DE, Lim SY, et al (2011). Loss of the promyelocytic leukemia protein in gastric cancer: implications for IP-10 expression and tumor-infiltrating lymphocytes. PLoS One, 6, 26264. https://doi.org/10.1371/journal.pone.0026264
  40. Koken MH, Puvion-Dutilleul F, Guillemin MC, et al (1994). The t(15;17) translocation alters a nuclear body in a retinoic acid-reversible fashion. Embo J, 13, 1073-83.
  41. Lallemand-Breitenbach V, Jeanne M, Benhenda S, et al (2008). Arsenic degrades PML or PML-RARalpha through a SUMOtriggered RNF4/ubiquitin-mediated pathway. Nat Cell Biol, 10, 547-55. https://doi.org/10.1038/ncb1717
  42. Lee EY, Lee ZH, Song YW (2009). CXCL10 and autoimmune diseases. Autoimmun Rev, 8, 379-83. https://doi.org/10.1016/j.autrev.2008.12.002
  43. Lee HE, Jee CD, Kim MA, et al (2007). Loss of promyelocytic leukemia protein in human gastric cancers. Cancer letters, 247, 103-9. https://doi.org/10.1016/j.canlet.2006.03.034
  44. Lin H-K, Bergmann S, Pandolfi PP (2004). Cytoplasmic PML function in TGF-${\beta}$ signalling. Nature, 431, 205-11. https://doi.org/10.1038/nature02783
  45. Maarifi G, Chelbi-Alix MK, Nisole S (2014). PML control of cytokine signaling. Cytokine Growth Factor Rev.
  46. Maiuri MC, Tasdemir E, Criollo A, et al (2009). Control of autophagy by oncogenes and tumor suppressor genes. Cell Death Differ, 16, 87-93. https://doi.org/10.1038/cdd.2008.131
  47. Mallette FA, Goumard S, Gaumont-Leclerc MF, et al (2004). Human fibroblasts require the Rb family of tumor suppressors, but not p53, for PML-induced senescence. Oncogene, 23, 91-9. https://doi.org/10.1038/sj.onc.1206886
  48. Nakamura TM, Morin GB, Chapman KB, et al (1997). Telomerase catalytic subunit homologs from fission yeast and human. Science, 277, 955-9. https://doi.org/10.1126/science.277.5328.955
  49. Martin N, Benhamed M, Nacerddine K, et al (2012). Physical and functional interaction between PML and TBX2 in the establishment of cellular senescence. Embo J, 31, 95-109. https://doi.org/10.1038/emboj.2011.370
  50. Mazza M, Pelicci PG (2013). Is PML a Tumor Suppressor? Front Oncol, 3, 174.
  51. Meyerson M, Counter CM, Eaton EN, et al (1997). hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell, 90, 785-95. https://doi.org/10.1016/S0092-8674(00)80538-3
  52. Nicewonger J, Suck G, Bloch D, et al (2004). Epstein-Barr virus (EBV) SM protein induces and recruits cellular Sp110b to stabilize mRNAs and enhance EBV lytic gene expression. J Virol, 78, 9412-22. https://doi.org/10.1128/JVI.78.17.9412-9422.2004
  53. Nisole S, Maroui MA, Mascle XH, et al (2013). Differential Roles of PML Isoforms. Front Oncol, 3, 125.
  54. Osman Y, Takahashi M, Zheng Z, et al (1999). Dendritic cells stimulate the expansion of PML-RAR alpha specific cytotoxic T-lymphocytes: its applicability for antileukemia immunotherapy. J Exp Clin Cancer Res, 18, 485-92.
  55. Padua RA, Larghero J, Robin M, et al (2003). PML-RARA-targeted DNA vaccine induces protective immunity in a mouse model of leukemia. Nature medicine, 9, 1413-7. https://doi.org/10.1038/nm949
  56. Potts PR, Yu H (2007). The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins. Nat Struct Mol Biol, 14, 581-90. https://doi.org/10.1038/nsmb1259
  57. Quignon F, De Bels F, Koken M, et al (1998). PML induces a novel caspase-independent death process. Nat Genet, 20, 259-65. https://doi.org/10.1038/3068
  58. Salomoni P, Dvorkina M, Michod D (2012). Role of the promyelocytic leukaemia protein in cell death regulation. Cell Death Dis, 3, 247. https://doi.org/10.1038/cddis.2011.122
  59. Rabellino A, Carter B, Konstantinidou G, et al (2012). The SUMO E3-ligase PIAS1 regulates the tumor suppressor PML and its oncogenic counterpart PML-RARA. Cancer Res, 72, 2275-84. https://doi.org/10.1158/0008-5472.CAN-11-3159
  60. Reineke EL, Kao HY (2009). PML: An emerging tumor suppressor and a target with therapeutic potential. Cancer Ther, 7, 219-26.
  61. Reineke EL, Liu Y, Kao H-Y (2010). Promyelocytic leukemia protein controls cell migration in response to hydrogen peroxide and insulin-like growth factor-1. J Biol Chem, 285, 9485-92. https://doi.org/10.1074/jbc.M109.063362
  62. Satow R, Shitashige M, Jigami T, et al (2012). beta-catenin inhibits promyelocytic leukemia protein tumor suppressor function in colorectal cancer cells. Gastroenterology, 142, 572-81. https://doi.org/10.1053/j.gastro.2011.11.041
  63. Scaglioni PP, Yung TM, Choi S, et al (2008). CK2 mediates phosphorylation and ubiquitin-mediated degradation of the PML tumor suppressor. Mol Cell Biochem, 316, 149-54. https://doi.org/10.1007/s11010-008-9812-7
  64. Shen TH, Lin HK, Scaglioni PP, et al (2006). The mechanisms of PML-nuclear body formation. Mol Cell, 24, 331-9. https://doi.org/10.1016/j.molcel.2006.09.013
  65. Silzle T, Randolph GJ, Kreutz M, et al (2004). The fibroblast: sentinel cell and local immune modulator in tumor tissue. Int J Cancer, 108, 173-80. https://doi.org/10.1002/ijc.11542
  66. Stadler M, Chelbi-Alix MK, Koken M, et al (1995). Transcriptional induction of the PML growth suppressor gene by interferons is mediated through an ISRE and a GAS element. Oncogene, 11, 2565-73.
  67. Stehmeier P, Muller S (2009). Phospho-regulated SUMO interaction modules connect the SUMO system to CK2 signaling. Mol Cell, 33, 400-9. https://doi.org/10.1016/j.molcel.2009.01.013
  68. Tatham MH, Geoffroy MC, Shen L, et al (2008). RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol, 10, 538-46. https://doi.org/10.1038/ncb1716
  69. Tabarestani S, Ghafouri-Fard S (2012). Cancer stem cells and response to therapy. Asian Pac J Cancer Prev, 13, 5951-8.
  70. Tamura G (2006). Alterations of tumor suppressor and tumorrelated genes in the development and progression of gastric cancer. World J Gastroenterol, 12, 192-8.
  71. Tang MK, Liang YJ, Chan JY, et al (2013). Promyelocytic leukemia (PML) protein plays important roles in regulating cell adhesion, morphology, proliferation and migration. PLoS One, 8, 59477. https://doi.org/10.1371/journal.pone.0059477
  72. Trotman LC, Alimonti A, Scaglioni PP, et al (2006). Identification of a tumour suppressor network opposing nuclear Akt function. Nature, 441, 523-7. https://doi.org/10.1038/nature04809
  73. Van Damme E, Laukens K, Dang TH, et al (2010). A manually curated network of the PML nuclear body interactome reveals an important role for PML-NBs in SUMOylation dynamics. Int J Biol Sci, 6, 51-67.
  74. Vernier M, Bourdeau V, Gaumont-Leclerc MF, et al (2011). Regulation of E2Fs and senescence by PML nuclear bodies. Genes Dev, 25, 41-50. https://doi.org/10.1101/gad.1975111
  75. Wang S, Long J, Zheng CF (2012). The potential link between PML NBs and ICP0 in regulating lytic and latent infection of HSV-1. Protein Cell, 3, 372-82. https://doi.org/10.1007/s13238-012-2021-x
  76. Wang Z-G, Ruggero D, Ronchetti S, et al (1998a). PML is essential for multiple apoptotic pathways. Nature genetics, 20, 266-72. https://doi.org/10.1038/3073
  77. Wang ZG, Ruggero D, Ronchetti S, et al (1998b). PML is essential for multiple apoptotic pathways. Nat Genet, 20, 266-72. https://doi.org/10.1038/3073
  78. Yang S, Kuo C, Bisi JE, et al (2002). PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2. Nat Cell Biol, 4, 865-70. https://doi.org/10.1038/ncb869
  79. Wu G, Lee WH, Chen PL (2000). NBS1 and TRF1 colocalize at promyelocytic leukemia bodies during late S/G2 phases in immortalized telomerase-negative cells. Implication of NBS1 in alternative lengthening of telomeres. J Biol Chem, 275, 30618-22. https://doi.org/10.1074/jbc.C000390200
  80. Wu S, Zhang X, Li ZM, et al (2013). Partial Least Squares Based Gene Expression Analysis in EBV- Positive and EBVNegative Posttransplant Lymphoproliferative Disorders. Asian Pac J Cancer Prev, 14, 6347-50. https://doi.org/10.7314/APJCP.2013.14.11.6347
  81. Wu WS, Xu ZX, Hittelman WN, et al (2003). Promyelocytic leukemia protein sensitizes tumor necrosis factor alphainduced apoptosis by inhibiting the NF-kappaB survival pathway. J Biol Chem, 278, 12294-304. https://doi.org/10.1074/jbc.M211849200
  82. Yeager TR, Neumann AA, Englezou A, et al (1999). Telomerasenegative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res, 59, 4175-9.
  83. Zhou W, Bao S (2014). PML-mediated signaling and its role in cancer stem cells. Oncogene, 33, 1475-84. https://doi.org/10.1038/onc.2013.111