Characteristics of PM2.5 Carbonaceous Aerosol using PILS-TOC and GC/MS-TD in Seoul

PILS-TOC 및 GC/MS-TD를 이용한 서울시 대기 중 초미세먼지(PM2.5) 유기탄소의 특성 분석

  • Park, Da-Jeong (Mokpo National University, Department of Environmental Engineering) ;
  • Ahn, Joon-Young (National Institute of Environmental Research, Air Quality Research Division) ;
  • Shin, Hye-Jung (National Institute of Environmental Research, Air Quality Research Division) ;
  • Bae, Min-Suk (Mokpo National University, Department of Environmental Engineering)
  • 박다정 (국립목포대학교 환경공학과) ;
  • 안준영 (국립환경과학원 대기환경연구과) ;
  • 신혜정 (국립환경과학원 대기환경연구과) ;
  • 배민석 (국립목포대학교 환경공학과)
  • Received : 2014.09.02
  • Accepted : 2014.10.06
  • Published : 2014.10.31


Continuous Water-Soluble Organic Carbons (WSOC) by the Particle Into Liquid Sampler - Total Organic Carbon (PILS-TOC) analyzer were measured at the Seoul intensive monitoring site from June 17 through July 5 in 2014. In addition, the 24 hour integrated PM2.5 collected by Teflon and Quartz filters were analyzed for water soluble ions by Ion chromatography (IC), WSOC by TOC from water extracts, organic carbon (OC), elemental carbon (EC) by carbon analyzer using the thermal optical transmittance (TOT) method, and mass fragment ions (m/z) related to alkanes and PAHs (Poly Aromatic Hydrocarbons) by Gas Chromatography-Mass Spectrometer-Thermal Desorption (GC/MS-TD). Based on the statistical analysis, four different Carbonaceous Thermal Distributions (CTDs) from OCEC thermal-gram were identified. This study discusses the primary and secondary sources of WSOC based on the Classified CTD, organic mass fragments, and diurnal patterns of WSOC. The results provide knowledge regarding the origins of WSOC and their behaviors.


Supported by : 한국연구재단


  1. Bae, M.S., J.S. Shin, K.Y. Lee, K.H. Lee, and Y.J. Kim (2014) Long-range transport of biomass burning emissions based on organic molecular markers and carbonaceous thermal distribution, Sci. Total Environ., 466, 56-66.
  2. Cho, S.Y. and S.S. Park (2013) Resolving sources of watersoluble organic carbon in fine particulate matter measured at an urban site during winter, Environ. Sci. Process Impacts, 15, 524-534.
  3. Bae, M.S., S.S. Park, and Y.J. Kim (2013) Characteristics of carbonaceous aerosols measured at Gosan- Based on analysis of thermal distribution by carbon analyzer and organic compounds by GCMS, J. Korean Soc. for Atmos. Environ., 6, 722-733.
  4. Baker, J. (2009) A cluster analysis of long range air transport pathways and associated pollutant concentrations within the UK, Atmos. Environ., 44(4), 563-571.
  5. Cheng, Y., K.B. He, F.K. Duan, M. Zheng, Z.Y. Du, Y.L. Ma, and J.H. Tan (2011) Ambient organic carbon to elemental carbon ratios: influences of the measurement methods and implications, Atmos. Environ., 45, 2060-2066.
  6. Gordon, T.D., A.A. Presto, A.A. May, N.T. Nguyen, E.M. Lipsky, N.M. Donahue, A. Gutierrez, M. Zhang, C. Maddox, P. Rieger, S. Chattopadhyay, H. Maldonado, M.M. Maricq, and A.L. Robinson (2013) Secondary organic aerosol formation exceeds primary particulate matter emissions for light-duty gasoline vehicles, Atmos. Chem. Phys., 13, 23173-23216.
  7. Jaffrezo, J.L., G. Aymoz, and J. Cozic (2005) Size distribution of EC and OC in the aerosol of Alpine valleys during summer and winter, Atmos. Chem. Phys., 5, 2915-2925.
  8. Jeong, J.U., J.H. Kim, S.S. Park, K.J. Moon, and S.J. Lee (2011) Study on characterization of hydrophilic and hydrophobic fractions of water-soluble organic carbon with a XAD resin, J. Korean Soc. for Atmos. Environ., 3, 337-346.
  9. Jin, L., R.A. Harley, and N.J. Brown (2011) Ozone pollution regimes modeled for a summer season in california's San Joaquin Valley: A cluster analysis, Atmos. Environ., 45(27), 4707-4718.
  10. Orsini, D.A., Y. Ma, A. Sullivan, B. Sierau, K. Baumann, and R.J. Weber (2003) Refinements to the particle-intoliquid sampler (PILS) for ground and airborne measurements of water soluble aerosol composition, Atmos. Environ., 37, 1243-1259.
  11. Kawamura, K., E. Tachibana, K. Okuzawa, S.G. Aggarwal, Y. Kanaya, and Z.F. Wang (2013) High abundances of water-soluble dicarboxylic acids, ketocarboxylic acids and a-dicarbonyls in the mountaintop aerosols over the North China Plain during wheat burning season, Atmos. Chem. Phys., 13, 8285-8302.
  12. Lee, J.Y., A. Lane, J.B. Huh, S.M. Yi, and Y.P. Kim (2009) Analysis of organic compounds in ambient PM2.5 over Seoul using thermal desorption-comprehensive two dimensional gas chromatography-time of flight mass spectrometry (TD-GC${\times}$GC-TOFMS), J. Korean Soc. for Atmos. Environ., 25(5), 420-431.
  13. Miyazaki, Y., Y. Kondo, S. Han, M. Koike, D. Kodama, Y. Komazaki, H. Tanimoto, and H. Matsueda (2007) Chemical characteristics of water-soluble organic carbon in the Asian outflow, J. Geophys. Res., 112, D22S30.
  14. Park, S.S., J.Y. Hur, S.Y. Cho, S.J. Kim, and Y.J. Kim (2007) Characteristics of organic carbon species in atmospheric aerosol particles at a Gwangju area during summer and winter, J. Korean Soc. for Atmos. Environ., 6, 675-688.
  15. Park, S.S. and S.Y. Cho (2011) Tracking sources and behaviors of water-soluble organic carbon in fine particulate matter measured at an urban site in Korea, Atmos. Environ., 45(1), 60-72.
  16. Peltier, R.E., A.P. Sullivan, R.J. Weber, A.G. Wollny, J.S. Holloway, C.A. Brock, J.A. de Gouw, and E.L. Atlas (2007) No evidence for acid-catalyzed secondary organic aerosol formation in power plant plumes over metropolitan Atlanta, Georgia, Geophys. Res. Lett., 34, L06801.
  17. Timonen, H., S. Carbone, M. Aurela, K. Saarnio, S. Saarikoski, N.L. Ng, M.R. Canagaratna, M. Kulmala, V.M. Kerminen, D.R. Worsnop, and R. Hillamo (2013) Characteristics, sources and water-solubility of ambient submicron organic aerosol in Helsinki, Finland, J. Aerosol Sci., 10.1016/j.bbr.2011.03.031.
  18. Robinson, A.L., N.M. Donahue, M.K. Shrivastava, E.A. Weitkamp, A.M. Sage, A.P. Grieshop, T.E. Lane, J.R. Pierce, and S.N. Pandis (2007) Rethinking organic aerosols: semivolatile emissions and photochemical aging, Science, 315, 1259-1262.
  19. Snyder, D.C., A.P. Rutter, R. Collins, C. Worley, and J.J. Schauer (2009) Insights into the origin of water soluble organic carbon in atmospheric fine particulate matter, Aerosol Sci. Technol., 43, 1099-1107.
  20. Sullivan, A.P., R.J. Weber, A.L. Clements, J.R. Turner, M.S. Bae, and J.J. Schauer (2004) A method for on-line measurement of water-soluble organic carbon in ambient aerosol particles: Results from an urban site, Geophys. Res. Lett., 31, L13105.
  21. Weber, R.J., A.P. Sullivan, R.E. Peltier, A. Russell, B. Yan, M. Zheng, J. de Gouw, C. Warneke, C. Brock, J.S. Holloway, E.L. Atlas, and E. Edgerton (2007) A study of secondary organic aerosol formation in the anthropogenic-influenced southeastern United States, J. Geophys. Res., 112, D13302.
  22. Weber, R.J., D. Orsini, Y. Daun, Y.N. Lee, P.J. Klotz, and F. Brechtel (2001) A particle-into-liquid collector for rapid measurement of aerosol bulk chemical composition, Aerosol Sci. Technol., 35, 718-727.
  23. Wonaschutz, A., S.P. Hersey, A. Sorooshian, J.S. Craven, A.R. Metcalf, R.C. Flagan, and J.H. Seinfeld (2011) Impact of a large wildfire on water-soluble organic aerosol in a major urban area: the 2009 Station Fire in Los Angeles County, Atmos. Chem. Phys., 11, 8257-8270.

Cited by

  1. Source Profile of Road Dust for Statistical Apportionment Modeling in Seoul vol.31, pp.2, 2015,
  2. Characteristics of Particulate Carbon in the Ambient Air in the Korean Peninsula vol.31, pp.4, 2015,
  3. Determination of Amino Acids on Wintertime PM2.5 using HPLC-FLD vol.31, pp.5, 2015,
  4. Time Resolved Analysis of Water Soluble Organic Carbon by Aerosol-into-Mist System vol.31, pp.6, 2015,
  5. -Part II vol.32, pp.2, 2016,
  6. Comparison of Real Time Water Soluble Organic Carbon Measurements by Two PILS-TOC Analyzers vol.32, pp.6, 2016,
  7. Estimations of the Optical Properties and Direct Radiative Forcing of Aerosol Chemical Components in PM2.5 Measured at Aewol Intensive Air Monitoring Site on Jeju Island vol.33, pp.5, 2017,