DOI QR코드

DOI QR Code

Impact of Greenhouse Gas Emissions from Commercial Aircraft on Radiative Forcing and Temperature Change at the Airports in Korea: Comparison between Simplified Expression and Radiative Transfer Model

국내 공항의 항공기 온실가스 배출에 의한 복사강제력 및 기온변화 영향 연구: 배출량에 의한 추정식과 복사전달모델의 비교 분석

  • Song, Sang-Keun (Department of Earth and Marine Sciences, Jeju National University) ;
  • Shon, Zang-Ho (Department of Environmental Engineering, Dong-Eui University) ;
  • Jeong, Ju-Hee (Department of Atmospheric Sciences, Pusan National University)
  • 송상근 (제주대학교 지구해양과학과) ;
  • 손장호 (동의대학교 환경공학과) ;
  • 정주희 (부산대학교 대기환경과학과)
  • Received : 2014.06.18
  • Accepted : 2014.08.05
  • Published : 2014.10.31

Abstract

In this study, spatial and temporal variations of radiative forcing (RF) and mean temperature changes due to greenhouse gases ($CO_2$, $CH_4$, and $N_2O$) emitted from commercial aircraft were examined based on the simplified expression at the airports in Korea during 2009~2010. The radiative transfer model (SBDART) was used to compare with the RF and mean temperature changes calculated from the simplified expressions for greenhouse gas $CO_2$. The RF simulated by the SBDART was about 67% higher than that of the simplified expression, on average. The highest mean RF (up to $9.0mW/m^2$ for $CO_2$) and mean temperature changes (up to $9.7{\times}10^{-5}^{\circ}K/day$ for $CO_2$) for all GHGs occurred at Ulsan airport during the study period, whereas the lowest RF and temperature changes at Yangyang (for $CO_2$) and Sacheon airports (for $CH_4$ and $N_2O$). In the case of $CH_4$ and $N_2O$, their effects to the RF and mean temperature change were negligible compared to $CO_2$.

Acknowledgement

Supported by : 한국연구재단

References

  1. Song, S.-K. and Z.-H. Shon (2014b) Temporal variations in optical properties and direct radiative forcing of different aerosol chemical components in Seoul using hourly aerosol sampling, J. Korean. Soc. Atmos. Environ., 30, 1-17. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2014.30.1.001
  2. Song, S.-K. and Z.-H. Shon (2012a) Emissions of air pollutants and greenhouse gases from aircraft activities at the Gimhae international airport, J. Kor. Soc. Atmos. Environ., 28, 190-202. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2012.28.2.190
  3. Song, S.-K. and Z.-H. Shon (2012b) Emissions of greenhouse gases and air pollutants from commercial aircraft at international airports in Korea, Atmos. Environ., 61, 148-158. https://doi.org/10.1016/j.atmosenv.2012.07.035
  4. Song, S.-K. and Z.-H. Shon (2014a) National emissions of greenhouse gases and air pollutants from commercial aircraft in the troposphere over South Korea, Terr. Atmos. Ocean. Sci., 25, 61-76. doi: 10.3319/TAO.2013.09.04.01 (A). https://doi.org/10.3319/TAO.2013.09.04.01(A)
  5. Song, S.-K., Z.-H. Shon, and J.-H. Jeong (2014) Influence of greenhouse gas emissions from commercial aircraft at Korean international airports on radiative forcing and temperature change, J. Korean. Soc. Atmos. Environ., 30(3), 223-232. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2014.30.3.223
  6. Hansen, J., I. Fung, A. Lacis, D. Rind, S. Lebedeff, R. Ruedy, G. Russsell, and P. Stone (1988) Global climate changes as forecast by Goddard Institute for Space Studies three-dimensional model, J. Geophys. Res., 93, 9341-9364. https://doi.org/10.1029/JD093iD08p09341
  7. Fan, W., Y. Sun, T. Zhu, and Y. Wen (2012) Emissions of HC, CO, $NO_x$, $CO_2$, and $SO_2$ from civil aviation in China in 2010, Atmos. Environ., 56, 52-57. https://doi.org/10.1016/j.atmosenv.2012.03.052
  8. Forster, P.M. and K.P. Shine (1997) Radiative forcing and temperature trends from stratospheric ozone change, J. Geophys. Res., 102, 10841-10857. https://doi.org/10.1029/96JD03510
  9. Gauss, M., I.S.A. Isaksen, D.S. Lee, and O.A. Sovde (2006) Impact of aircraft $NO_x$ emissions on the atmospheretradeoffs to reduce the impact, Atmos. Chem. Phys., 6, 1529-1548. https://doi.org/10.5194/acp-6-1529-2006
  10. Hansen, J., M. Sato, and R. Ruedy (1997) Radiative forcing and climate response, J. Geophys. Res., 102, D6, 6831-6864.
  11. Hansen, J., M. Sato, R. Ruedy, L. Nazarenko, A. Lacis, G.A. Schmidt, and G. Russell (2005) Efficacy of climate forcings, J. Geophys. Res., 110, D18104. https://doi.org/10.1029/2005JD005776
  12. IPCC (1990) Climate Change 1990: the Intergovernmental Panel on Climate Change Scientific Assessment [Houghton, J.T., B.A. Callander, and S.K. Varney (eds)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  13. Santoni, G.W., B.H. Lee, E.C. Wood, S.C. Herndon, R.C. Miake-Lye, S.C. Wofsy, J.B. McMauts, D.D. Nelson, and M.S. Zahniser (2011) Aircraft emissions of methane and nitrous oxide during the alternative aviation fuel experiment, Environ. Sci. Technol., 45, 7075-7082. https://doi.org/10.1021/es200897h
  14. IPCC (1999) Intergovernmental Panel on Climate Change Special Report on Aviation and the Global Atmosphere [Penner, J.E., D.H. Lister, D.J. Griggs, D.J. Dokken, and M. McFarland (eds)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 373 pp.
  15. Ponater M., S. Pechtl, R. Sausen, U. Schumann, and G. Huttig (2006) Potential of the cryoplane technology to reduce aircraft climate impact: A state-of-the-art assessment, Atmos. Environ., 40, 6928-6944. https://doi.org/10.1016/j.atmosenv.2006.06.036
  16. Ricchiazzi, P., C. Yang, C. Gautier, and D. Sowle (1998) A research and teaching software tool for plane-parallel radiative transfer in the earth's atmosphere. Bull. Amer. Meteor. Soc., 79, 2101-2114. https://doi.org/10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2
  17. Sausen, R., I. Isaksen, V. Grewe, D. Hauglustaine, D.S. Lee, G. Myhre, M.O. Kohler, G. Pitari, U. Schumann, F. Stordal, and C. Zerefos (2005) Aviation radiative forcing in 2000. An update on IPCC (1999), Meteorol. Z., 14, 555-561. https://doi.org/10.1127/0941-2948/2005/0049
  18. Schumann, U. (1997) The impact of nitrogen oxides emissions from aircraft upon the atmosphere at flight altitudesresults from the AERONOX Project, Atmos. Environ., 31, 1723-1733. https://doi.org/10.1016/S1352-2310(96)00326-3
  19. Seinfeld, J.H. and S.N. Pandis (2006) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, second ed. John Wiley & Sons, Inc., New York.
  20. Shi, G. (1992) Radiative forcing and greenhouse effect due to the atmospheric trace gases, Science in China (Series B), 25, 217-229.
  21. Shon, Z.-H., S.-K. Song, T.-K. Yoon, and G.-C. Lee (2013) Emissions of air pollutants and greenhouse gases from aircraft activities at the small scale airports, J. Environ. Sci. Int., 22, 823-836. (in Korean with English abstract) https://doi.org/10.5322/JESI.2013.22.7.823
  22. IPCC (2007) Intergovernmental Panel on Climate Change Fourth Assessment Report - Climate Change 2007: The Physical Science Basis Summary for Policymakers.
  23. Stuber, N. and P. Forster (2007) The impact of diurnal variations of air traffic on contrail radiative forcing, Atmos. Chem. Phys., 7, 3153-3162. https://doi.org/10.5194/acp-7-3153-2007
  24. Travis, D.J., A.M. Carleton, and R.G. Lauritsen (2002) Contrails reduce daily temperature range, Nature, 418, 601-602.
  25. Uherek, E., T. Halenka, J. Borken-Kleefeld, Y. Balkanski, T. Berntsen, C. Borrego, M. Gauss, P. Hoor, K. Juda-Rezler, J. Lelieveld, D. Melas, K. Rypdal, and S. Schmid (2010) Transport impacts on atmosphere and climate: Land transport, Atmos. Environ., 44, 4772-4816. https://doi.org/10.1016/j.atmosenv.2010.01.002
  26. IPCC (2013) Intergovernmental Panel on Climate Change Fifth Assessment Report - Climate Change 2013, The Physical Science Basis, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  27. Johnson, C., J. Henshaw, and G. Mclnnes (1992) Impact of aircraft and surface emissions of nitrogen oxides on tropospheric ozone and global warming, Nature, 355, 69-71. https://doi.org/10.1038/355069a0
  28. Joshi, M., K. Shine, M. Ponater, N. Stuber, R. Sausen, and L. Li (2003) A comparison of climate response to different radiative forcings in three general circulation models towards an improved metric of climate change, Clim. Dynam., 20, 843-854. doi:10.1007/s00382-003-0305-9. https://doi.org/10.1007/s00382-003-0305-9
  29. Kim, K.-Y., J.-Y. Byon, and H.-D. Kim (2013) Heat island intensity in Seongseo, Daegu, South Korea - a rural suburb containing large areas of water, J. Environ. Sci. Int., 22, 1337-1344. https://doi.org/10.5322/JESI.2013.22.10.1337
  30. Kim, M.Y., S.-B. Lee, G.-N. Bae, S.S. Park, K.M. Han, R.S. Park, C.H. Song, and S.H. Park (2012) Distribution and direct radiative forcing of black carbon aerosols over Korean Peninsula, Atmos. Environ., 58, 45-55. https://doi.org/10.1016/j.atmosenv.2012.03.077
  31. Korea Meteorological Administration (KMA) (2009) Annual Aerodrome Weather Report 2009, Seoul, Korea.
  32. Korea Meteorological Administration (KMA) (2010) Annual Aerodrome Weather Report 2009, Seoul, Korea.
  33. Lim, L., D.S. Lee, R. Sausen, and M. Ponater (2006) Quantifying the effects of aviation on radiative forcing and temperature with a climate response model, Proceedings of the TAC-Conference, Oxford, UK.
  34. Korea Transport Institute (KOTI) (2009) Investigation of the emission of greenhouse gases from transport.
  35. Lee, D.S., D.W. Fahey, P.M. Forster, P.J. Newton, R.C.N. Wit, L.L. Lim, B. Owen, and R. Sausen (2009) Aviation and global climate change in the 21st century, Atmos. Environ., 43, 3520-3537. https://doi.org/10.1016/j.atmosenv.2009.04.024
  36. Lee, D.S., G. Pitari, V. Grewe, K. Gierens, J.E. Penner, A. Petzold, M.J. Prather, U. Schumann, A. Bais, T. Berntsen, D. Iachetti, L.L. Lim, and R. Sausen (2010) Transport impacts on atmosphere and climate: Aviation, Atmos. Environ., 44, 4678-4734. https://doi.org/10.1016/j.atmosenv.2009.06.005
  37. Myhre, G., E.J. Highwood, K.P. Shine, and F. Stordal (1998) New estimates of radiative forcing due to well mixed greenhouse gases, Geophys. Res. Lett., 25, 2715-2718. https://doi.org/10.1029/98GL01908