Effect of Lactobacillus mucosae on In vitro Rumen Fermentation Characteristics of Dried Brewers Grain, Methane Production and Bacterial Diversity

  • Soriano, Alvin P. (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, College of Bio-industry Science, Sunchon National University) ;
  • Mamuad, Lovelia L. (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, College of Bio-industry Science, Sunchon National University) ;
  • Kim, Seon-Ho (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, College of Bio-industry Science, Sunchon National University) ;
  • Choi, Yeon Jae (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, College of Bio-industry Science, Sunchon National University) ;
  • Jeong, Chang Dae (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, College of Bio-industry Science, Sunchon National University) ;
  • Bae, Gui Seck (Department of Animal Science and Technology, Chung-Ang University) ;
  • Chang, Moon Baek (Department of Animal Science and Technology, Chung-Ang University) ;
  • Lee, Sang Suk (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, College of Bio-industry Science, Sunchon National University)
  • Received : 2014.07.11
  • Accepted : 2014.09.14
  • Published : 2014.11.01


The effects of Lactobacillus mucosae (L. mucosae), a potential direct fed microbial previously isolated from the rumen of Korean native goat, on the rumen fermentation profile of brewers grain were evaluated. Fermentation was conducted in serum bottles each containing 1% dry matter (DM) of the test substrate and either no L. mucosae (control), 1% 24 h broth culture of L. mucosae (T1), or 1% inoculation with the cell-free culture supernatant (T2). Each serum bottle was filled anaerobically with 100 mL of buffered rumen fluid and sealed prior to incubation for 0, 6, 12, 24, and 48 h from which fermentation parameters were monitored and the microbial diversity was evaluated. The results revealed that T1 had higher total gas production (65.00 mL) than the control (61.33 mL) and T2 (62.00 mL) (p<0.05) at 48 h. Consequently, T1 had significantly lower pH values (p<0.05) than the other groups at 48 h. Ammonia nitrogen ($NH_3$-N), individual and total volatile fatty acids (VFA) concentration and acetate:propionate ratio were higher in T1 and T2 than the control, but T1 and T2 were comparable for these parameters. Total methane ($CH_4$) production and carbon dioxide ($CO_2$) were highest in T1. The percent DM and organic matter digestibilities were comparable between all groups at all times of incubation. The total bacterial population was significantly higher in T1 (p<0.05) at 24 h, but then decreased to levels comparable to the control and T2 at 48 h. The denaturing gradient gel electrophoresis profile of the total bacterial 16s rRNA showed higher similarity between T1 and T2 at 24 h and between the control and T1 at 48 h. Overall, these results suggest that addition of L. mucosae and cell-free supernatant during the in vitro fermentation of dried brewers grain increases the VFA production, but has no effect on digestibility. The addition of L. mucosae can also increase the total bacterial population, but has no significant effect on the total microbial diversity. However, inoculation of the bacterium may increase $CH_4$ and $CO_2$ in vitro.


  1. Brown, D. W. and W. E. C. Moore. 1960. Distribution of Butyrivibrio fibrisolvens in nature. J. Dairy Sci. 43:1570-1574.
  2. Asanuma, N., M. Iwamoto, and T. Hino. 1999. Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro. J. Dairy Sci. 82:780-787.
  3. Bilkova, A., H. K. Sepova, M. Bukovsky, and L. Bezakova. 2011. Antibacterial potential of Lactobacilli isolated from a lamb. Vet. Med. 56:319-324
  4. Blummel, M. and K. Becker. 1997. The degradability characteristics of fifty-four roughages and roughage neutraldetergent fibres as described by in vitro gas production and their relationship to voluntary feed intake. Br. J. Nutr. 77:757-768.
  5. Bryant, M. P. and N. Small. 1956. The anaerobic monotrichous butyric acid-producing curved rod-shaped bacteria of the rumen. J. Bacteriol. 72:16-21.
  6. Chaney, A. L. and E. P. Marbach. 1962. Modified reagents for determination of urea and ammonia. Clin. Chem. 8:130-132.
  7. Chanthakhoun, V. and M. Wanapat. 2012. The in vitro gas production and ruminal fermentation of various feeds using rumen liquor from swamp buffalo and cattle. Asian J. Anim. Vet. Adv. 7:54-60.
  8. Chen, S., L. Niu, and Y. Zhang. 2010. Saccharofermentans acetigenes gen. nov., sp. nov., an anaerobic bacterium isolated from sludge treating brewery wastewater. Int. J. Syst. Evol. Microbiol. 60:2735-2738.
  9. Cotta, M. A. and R. B. Hespell. 1986. Proteolytic activity of the ruminal bacterium Butyrivibrio fibrisolvens. Appl. Environ. Microbiol. 52:51-58.
  10. Enitan, A., J. Adeyemo, and S. Ogunbanwo. 2011. Influence of growth conditions and nutritionalrequirements on the production of hydrogen peroxideby lactic acid bacteria. Afr. J. Microbiol. Res. 5:2059-2066.
  11. Hattori, K. and H. Matsui. 2008. Diversity of fumarate reducing bacteria in the bovine rumen revealed by culture dependent and independent approaches. Anaerobe 14:87-93.
  12. Getachew, G., M. Blummel, H. P. S. Makkar, and K. Becker. 1998. In vitro gas measuring techniques for assessment of nutritional quality of feeds: A review. Anim. Feed Sci. Technol. 72:261-281.
  13. Guglielmelli, A., S. Calabro, M. Cutrignelli, O. Gonzalez, F. Infascelli, R. Tudisco, and V. Piccolo. 2010. In vitro fermentation and methane production of fava and soy beans. Energy and protein metabolism and nutrition. EAAP Scientific Series 127. 3rd EAAP International Symposium on Energy and Protein Metabolism and Nutrition. Wageningen Academic Publishers, Parma, Italy. 457-460.
  14. Hane, B. G., K. Jager, and H. G. Drexler. 1993. The Pearson product-moment correlation coefficient is better suited for identification of DNA fingerprint profiles than band matching algorithms. Electrophoresis 14:967-972.
  15. Kamra, D. N. 2005. Rumen microbial ecosystem. Curr. Sci. 89(1).
  16. Kim, S. H., L. L. Mamuad, C. D. Jeong, Y. J. Choi, S. S. Lee, J. Y. Ko, and S. S. Lee. 2013. In vitro evaluation of different feeds for their potential to generate methane and change methanogen diversity. Asian Australas. J. Anim. Sci. 26:1698-1707.
  17. Krehbiel, C. R., S. R. Rust, G. Zhang, and S. E. Gilliland. 2003. Bacterial direct-fed microbials in ruminant diets: Performance response and mode of action. J. Anim. Sci. 81(14 Suppl 2):E120-E132.
  18. Mamuad, L. L., S. H. Kim, A. P. Soriano, and S. Lee. 2012b. Lactobacillus mucosae 521129: A propionate-producing bacteria isolated from Korean native goat. Unpublished paper.
  19. Mamuad, L. L., S. H. Kim, S. S. Lee, K. K. Cho, C. O. Jeon, and S. S. Lee. 2012a. Characterization, metabolites and gas formation of fumarate reducing bacteria isolated from Korean native goat (Capra hircus coreanae). J. Microbiol. 50:925-931.
  20. Nocek, J. E., W. P. Kautz, J. A. Z. Leedle, and J. G. Allman. 2002. Ruminal supplementation of direct-fed microbials on diurnal pH variation and in situ digestion in dairy cattle. J. Dairy Sci. 85:429-433.
  21. Marounek, M. and D. Duskova. 1999. Metabolism of pectin in rumen bacteria Butyrivibrio fibrisolvens and Prevotella ruminicola. Lett. App. Microbiol. 29:429-433.
  22. Morita, H., H. Toh, S. Fukuda, H. Horikawa, K. Oshima, T. Suzuki, M. Murakami, S. Hisamatsu, Y. Kato, T. Takizawa, H. Fukuoka, T. Yoshimura, K. Itoh, D. J. O'Sullivan, L. L. McKay, H. Ohno, J. Kikuchi, T. Masaoka, and M. Hattori. 2008. Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production. DNA Res. 15:151-161.
  23. Muyzer, G. and K. Smalla. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73:127-141.
  24. Nollet, L., L. Mbanzamihigo, D. Demeyer, and W. Verstraete. 1998. Effect of the addition of Peptostreptococcus productus ATCC 35244 on reductive acetogenesis in the ruminal ecosystem after inhibition of methanogenesis by cell-free supernatant of Lactobacillus plantarum 80. Anim. Feed Sci. Technol. 71:49-66.
  25. Nubel, U., B. Engelen, A. Felske, J. Snaidr, A. Wieshuber, R. I. Amann, W. Ludwig, and H. Backhaus. 1996. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bacteriol. 178:5636-5643.
  26. Owens, F. N. and R. Zinn. 1988. Protein metabolism of ruminants. The Ruminant Animal: Digestive Physiology and Nutrition (Ed. D. C. Church). Prentice Hall, Englewood Cliffs, NJ, USA.
  27. Pereira, J. C., M. D. Carro, J. Gonzalez, M. R. Alvir, and C. A. Rodriguez. 1998. Rumen degradability and intestinal digestibility of brewers' grains as affected by origin and heat treatment and of barley rootlets. Anim. Feed Sci. Technol. 74:107-121.
  28. Simpson, J. M., V. J. McCracken, B. A. White, H. R. Gaskins, and R. I. Mackie. 1999. Application of denaturant gradient gel electrophoresis for the analysis of the porcine gastrointestinal microbiota. J. Microbiol. Methods 36:167-179.
  29. Roos, S., F. Karner, L. Axelsson, and H. Jonsson. 2000. Lactobacillus mucosae sp. nov., a new species with in vitro mucus-binding activity isolated from pig intestine. Int. J. Syst. Evol. Microbiol. 50:1:251-258.
  30. Satter, L. D. and L. L. Slyter. 1974. Effect of ammonia concentration on rumen microbial protein production in vitro. Br. J. Nutr. 32:199-208.
  31. Seo, J. K., S. Kim, M. H. Kim, S. D. Upadhaya, D. K. Kam, and J. K. Ha. 2010. Direct-fed microbials for ruminant animals. Asian Australas. J. Anim. Sci. 23:1657-1667.
  32. Takahashi, J. 2013. Lactic acid bacteria and mitigation of GHG emission from ruminant livestock. Lactic Acid Bacteria - R & D for Food, Health and Livestock Purposes. InTech Publishing, Vienna, Austria.
  33. Valeriano, V. D., M. M. Parungao-Balolong, and D. K. Kang. 2014. In vitro evaluation of the mucin-adhesion ability and probiotic potential of Lactobacillus mucosae LM1. J. Appl. Microbiol. 117:485-497.
  34. Wells, J. E., D. O. Krause, T. R. Callaway, and J. B. Russell. 1997. A bacteriocin-mediated antagonism by ruminal lactobacilli against Streptococcus bovis. FEMS Microbiol. Ecol. 22:237-243.
  35. Zafarian, R. and M. Manafi. 2013. Effect of garlic powder on methane production, rumen fermentation and milk production of buffaloes. Annu. Rev. Res. Biol. 3:1013-1019.
  36. Zicarelli, F., S. Calabro, M. I. Cutrignelli, F. Infascelli, R. Tudisco, F. Bovera, and V. Piccolo. 2011. In vitro fermentation characteristics of diets with different forage/concentrate ratios: comparison of rumen and faecal inocula. J. Sci. Food Agric. 91:1213-1221.

Cited by

  1. Use of Lysozyme as a Feed Additive on In vitro Rumen Fermentation and Methane Emission vol.29, pp.11, 2016,
  2. Rumen fermentation and performance of Hanwoo steers fed total mixed ration with Korean rice wine residue vol.58, pp.1, 2016,
  3. rumen fermentation vol.123, pp.1, 2017,
  4. Nutritive Value, in vitro Fermentation Characteristics and Nutrient Digestibility of Agro-industrial Byproducts-based Complete Feed Block Enriched with Mixed Microbes vol.16, pp.6, 2017,
  5. Effects of Selected Lactobacillus plantarum as Probiotic on In vitro Ruminal Fermentation and Microbial Population vol.17, pp.3, 2018,
  6. In vitro study of postbiotics from Lactobacillus plantarum RG14 on rumen fermentation and microbial population vol.47, pp.0, 2018,