DOI QR코드

DOI QR Code

Evaluation of Genome Based Estimated Breeding Values for Meat Quality in a Berkshire Population Using High Density Single Nucleotide Polymorphism Chips

  • Baby, S. (School of Biotechnology, Yeungnam University) ;
  • Hyeong, K.E. (School of Biotechnology, Yeungnam University) ;
  • Lee, Y.M. (School of Biotechnology, Yeungnam University) ;
  • Jung, J.H. (Dasan Pig Breeding Co.) ;
  • Oh, D.Y. (Gyeongbuk Livestock Research Institute) ;
  • Nam, K.C. (Department of Animal Science and Technology, Sunchon National University) ;
  • Kim, T.H. (Animal Genomics and Bioinformatics Division, National Institute of Animal Science) ;
  • Lee, H.K. (Genomic Informatics Center, Hankyong National University) ;
  • Kim, Jong-Joo (School of Biotechnology, Yeungnam University)
  • Received : 2014.05.19
  • Accepted : 2014.07.14
  • Published : 2014.11.01

Abstract

The accuracy of genomic estimated breeding values (GEBV) was evaluated for sixteen meat quality traits in a Berkshire population (n = 1,191) that was collected from Dasan breeding farm, Namwon, Korea. The animals were genotyped with the Illumina porcine 62 K single nucleotide polymorphism (SNP) bead chips, in which a set of 36,605 SNPs were available after quality control tests. Two methods were applied to evaluate GEBV accuracies, i.e. genome based linear unbiased prediction method (GBLUP) and Bayes B, using ASREML 3.0 and Gensel 4.0 software, respectively. The traits composed different sets of training (both genotypes and phenotypes) and testing (genotypes only) data. Under the GBLUP model, the GEBV accuracies for the training data ranged from $0.42{\pm}0.08$ for collagen to $0.75{\pm}0.02$ for water holding capacity with an average of $0.65{\pm}0.04$ across all the traits. Under the Bayes B model, the GEBV accuracy ranged from $0.10{\pm}0.14$ for National Pork Producers Council (NPCC) marbling score to $0.76{\pm}0.04$ for drip loss, with an average of $0.49{\pm}0.10$. For the testing samples, the GEBV accuracy had an average of $0.46{\pm}0.10$ under the GBLUP model, ranging from $0.20{\pm}0.18$ for protein to $0.65{\pm}0.06$ for drip loss. Under the Bayes B model, the GEBV accuracy ranged from $0.04{\pm}0.09$ for NPCC marbling score to $0.72{\pm}0.05$ for drip loss with an average of $0.38{\pm}0.13$. The GEBV accuracy increased with the size of the training data and heritability. In general, the GEBV accuracies under the Bayes B model were lower than under the GBLUP model, especially when the training sample size was small. Our results suggest that a much greater training sample size is needed to get better GEBV accuracies for the testing samples.

Acknowledgement

Supported by : Rural Development Administration

References

  1. Lillehammer, M., T. H. E. Meuwissen, and A. K. Sonesson. 2011. Genomic selection for maternal traits in pigs. J. Anim. Sci. 89:3908-3916. https://doi.org/10.2527/jas.2011-4044
  2. Luo, W., D. Cheng, S. Chen, L. Wang, Y. Li, X. Ma, X. Song, X. Liu, W. Li, J. Liang, H. Yan, K. Zhao, C. Wang, L. Wang, and L. Zhang. 2012. Genome-wide association analysis of meat quality traits in a porcine Large White${\times}$Minzhu intercross population. Int. J. Biol. Sci. 8:580-595. https://doi.org/10.7150/ijbs.3614
  3. McLaughlin, K. 2004. Now, It's the Other Red Meat; Atkins Craze Gives a Boost to Fattier, Tastier Pork; Tracing Your Chops' Pedigree. Wall Street J. D1.
  4. Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819-1829.
  5. NPPC. 2000. Pork Composition and Quality Assessment Procedures. National Pork Producers Council, Des Moines, IA, USA.
  6. Meuwissen, T. H. E. 2009. Accuracy of breeding values of 'unrelated' individuals predicted by dense SNP genotyping. Genet. Sel Evol. 41:35. https://doi.org/10.1186/1297-9686-41-35
  7. Moser, G., B. Tier, R. E. Crump, M. S. Khatkar, and H. W. Raadsma. 2009. A comparison of five methods to predict genomic breeding values of dairy bulls from genome-wide SNP markers. Genet. Sel. Evol. 41:56. https://doi.org/10.1186/1297-9686-41-56
  8. Newcom, D. W., T. J. Baas, J. W. Mabry, and R. N. Goodwin. 2002. Genetic parameters for pork carcass components. J. Anim. Sci. 80:3099-3106.
  9. Nothnagel, M., D. Ellinghaus, S. Schreiber, M. Krawczak, and A. Franke. 2009. A comprehensive evaluation of SNP genotype imputation. Hum. Genet. 125:163-171. https://doi.org/10.1007/s00439-008-0606-5
  10. Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira, D. Bender, J. Maller, P. Sklar, P. I. de Bakker, M. J. Daly, and P. C. Sham. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81:559-575. https://doi.org/10.1086/519795
  11. Rothschild, M. F. and A. Ruvinsky. 2011. The Genetics of the Pig. 2nd ed. CAB Int. NY, USA.
  12. Simianer, H. 2009. The potential of genomic selection to improve litter size in pig breeding programs. Proc 60th Annual meeting of the European Association of Animal Production, Barcelona, Spain. pp. 210.
  13. Tomiyama, M., T. Kanetani, Y. Tatsukawa, H. Mori, and T. Oikawa. 2011. Genetic relationships and expected responses for genetic improvement of carcass traits of Berkshire pigs. Sci. Agric. (Piracicaba, Braz.) 68:594-597.
  14. Tribout, T., C. Larzul, and F. Phocas. 2012. Efficiency of genomic selection in a purebred pig male line. J. Anim. Sci. 90:4164-4176. https://doi.org/10.2527/jas.2012-5107
  15. Tsuruta, S. and I. Misztal. 2008. Technical note: Computing options for genetic evaluation with a large number of genetic markers. J. Anim. Sci. 86:1514-1518. https://doi.org/10.2527/jas.2007-0324
  16. Dekkers, J. C. M., P. K. Mathur, and E. F. Knol. 2010. Genetic improvement of the pig. In: The Genetics of the Pig (Eds. M. F. Rothschild and A. Ruvinsky), chapter 16. 2nd ed. CABI, Cambridge, MA, USA. 390-425.
  17. van Wijk, H. J., D. J. Arts, J. O. Matthews, M. Webster, B. J. Ducro, and E. F. Knol. 2005. Genetic parameters for carcass composition and pork quality estimated in a commercial production chain. J. Anim. Sci. 83:324-333.
  18. Cleveland, M. A., S. Forni, D. J. Garrick, and N. Deeb. 2010. Prediction of genomic breeding values in a commercial pig population. Proceedings of the 9th World Congress on Genetics Applied to Livestock Production. Paper 0266. August 1-6, 2010. Leipzig, Germany.
  19. Daetwyler H. D., B. Villanueva, and J. A. Woolliams. 2008. Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLoS One. 3(10):e3395. https://doi.org/10.1371/journal.pone.0003395
  20. Erbe, M., B. J. Hayes, L. K. Matukumalli, S. Goswami, P. J. Bowman, C. M. Reich, B. A. Mason, and M. E. Goddard. 2012. Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels. J. Dairy Sci. 95:4114-4129. https://doi.org/10.3168/jds.2011-5019
  21. Etherington, D. E. and T. J. Sims. 1981. Detection and estimation of collage. J. Sci. Food Agric. 32:539-546. https://doi.org/10.1002/jsfa.2740320603
  22. Fernando, R. L., D. Habier, C. Stricker, J. C. M. Dekkers, and L. R. Totir. 2007. Genomic selection. Acta Agric. Scand. A Anim. Sci. 57:192-195.
  23. Folch, J., M. Lee, and G. H. Sloane-Stanley. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497-507.
  24. Gilmour, A. R., R. Thompson, and B. R. Cullis. 1995. Average information REML; an efficient algorithm for variance parameter estimation in linear mixed models. Biometrics 51:1440-1450. https://doi.org/10.2307/2533274
  25. Goddard, M. E. 2009. Genomic selection: Prediction of accuracy and maximization of long term response. Genetica 136:245-257 https://doi.org/10.1007/s10709-008-9308-0
  26. Jung, J.-H., C.-W. Kim, B.-Y. Park, J.-S. Choi, and H.-C. Park. 2011. Genetic parameter estimates for meat quality traits in Berkshire pigs. J. Anim. Sci. Technol. 53:289-296. https://doi.org/10.5187/JAST.2011.53.4.289
  27. Goodwin, R. and S. Burroughs. 1995. Genetic Evaluation Terminal Line Program Results. National Pork Producers Council, Des Moines, IA, USA.
  28. Habier, D., R. L. Fernando, K. Kizilkaya, and D. J. Garrick. 2011. Extension of the bayesian alphabet for genomic selection. BMC Bioinformatics 12:186. https://doi.org/10.1186/1471-2105-12-186
  29. Hayes, B. J., P. J. Bowman, A. J. Chamberlain, and M. E. Goddard. 2009. Invited review: Genomic selection in dairy cattle: Progresses and challenges. J. Dairy Sci. 92:433-443. https://doi.org/10.3168/jds.2008-1646
  30. Kawaida., H. 1993. Studies on the performance of meat production and meat in pigs. Report of Kagoshima Prefectural Animal Husbandry Experiment Stations. 26:1-195.
  31. Lammers, P. J., J. W. Mabry, Honeyman, S. Mark, Swantek, P. Matthew, and W. B. Roush. 2011. Developing berkshire market pig growth curves. Iowa State Research Farm Progress Reports.
  32. Legarra, A. and I. Misztal. 2008. Technical note: Computing strategies in genome-wide selection. J. Dairy Sci. 91:360-366. https://doi.org/10.3168/jds.2007-0403
  33. American Berkshire Association. 2013. Information on Berkshires. Available: http://www.americanberkshire.com. Accessed Nov1, 2013.
  34. AOAC. 2000. Official Methods of Analysis Gaithersburg, MD: Association of Official Analytical Chemists. 17th ed. Arlington, VA, USA.
  35. Badke, Y. M., R. O. Bates, C. W. Ernst, J. Fix, and J. P. Steibel. 2014. Accuracy of estimation of genomic breeding value in pigs using low density genotypes and imputation. G3 4:623-631. https://doi.org/10.1534/g3.114.010504
  36. Boddhireddy, P., M. J. Kelly, S. Northcutt, K. C. Prayaga, J. Rumph, and S. Denise. 2014. Genomic predictions in Angus cattle: comparisons of sample size, response variables, and clustering methods for cross-validation. J. Anim. Sci. 92:485-497. https://doi.org/10.2527/jas.2013-6757
  37. Bonneau, M. and B. Lebret. 2010. Production systems and influence on eating quality of pork. Meat Sci. 84:293-300. https://doi.org/10.1016/j.meatsci.2009.03.013
  38. Brewer, M. S., J. Jensen, A. A. Sosnicki, B. Fields, E. Wilson, and F. K. McKeith. 2002. The effect of pig genetics on palatability, color, and physical characteristics of fresh pork loin chops. Meat Sci. 61:249-256. https://doi.org/10.1016/S0309-1740(01)00190-5
  39. Brorsen, B. W., J. T. Akridge, M. A. Boland, S. Mauney, and J. C. Forrest. 1998. Performance and alternative component pricing systems for pork. J. Agric. Appl. Econ. 30:313-324.
  40. Browning, S. R. and B. L Browning. 2007. Rapid and accurate haplotype phasing and missing data inference for wholegenome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81:1084-1097. https://doi.org/10.1086/521987
  41. Christensen, O. F. and M. S. Lund. 2010. Genomic prediction when some animals are not genotyped. Genet. Sel. Evol. 46:2.
  42. van Raden, P. M., C. P. Van Tassell, G. R. Wiggans, T. S. Sonstegard, R. D. Schnabel, J. F. Taylor, and F. S. Schenkel. 2009. Invited review: Reliability of genomic predictions for North American Holstein bulls. J. Dairy Sci. 92:16-24. https://doi.org/10.3168/jds.2008-1514
  43. Wellmann, R., S. Preuss, E. Tholen, J. Heinkel, K. Wimmers, and J. Bennewitz. 2013. Genomic selection using low density marker panels with application to a sire line in pigs. Genet. Sel. Evol. 45:28. https://doi.org/10.1186/1297-9686-45-28
  44. Wiggans, G. R., P. M. VanRaden, and T. A. Cooper. 2011. The genomic evaluation system in the United States: past, present, future. J. Dairy Sci. 94:3202-3211. https://doi.org/10.3168/jds.2010-3866

Cited by

  1. Genomic selection in pigs: state of the art and perspectives vol.15, pp.2, 2016, https://doi.org/10.1080/1828051X.2016.1172034