DOI QR코드

DOI QR Code

Analysis of Human Activity Using Motion Vector and GPU

움직임 벡터와 GPU를 이용한 인간 활동성 분석

  • 김선우 (군산대학교 정보통신공학과) ;
  • 최연성 (군산대학교 정보통신공학과)
  • Received : 2014.08.12
  • Accepted : 2014.10.17
  • Published : 2014.10.31

Abstract

In this paper, We proposed the approach of GPU and motion vector to analysis the Human activity in real-time surveillance system. The most important part, that is detect blob(human) in the foreground. We use to detect Adaptive Gaussian Mixture, Weighted subtraction image for salient motion and motion vector. And then, We use motion vector for human activity analysis. In this paper, the activities of human recognize and classified such as meta-classes like this {Active, Inactive}, {Position Moving, Fixed Moving}, {Walking, Running}. We created approximately 300 conditions for the simulation. As a result, We showed a high success rate about 86~98%. The results also showed that the high resolution experiment by the proposed GPU-based method was over 10 times faster than the cpu-based method.

References

  1. S.-W. Kim, T.-R. Ha, C.-B. Park, and Y.-S. Choi, "Salient Motion Information Detection Method Using Weighted Subtraction Image and Motion Vector," J. of the Korean Institute of Maritime Information and Communication Sciences, vol. 11, no. 4, 2007. pp. 779-785.
  2. J.-J. Park, S.-W. Kim, Y.-S. Choi, C.-B. Park, and T.-R. Ha, "A Study On the Moving Object Tracking System Using Multi-feature Matching," J. of the Korean Institute of Maritime Information and Communication Sciences, vol. 11, no. 4, 2007, pp. 787-792.
  3. H.-T. Kim, G.-H. Lee, J.-S. Park, and Y.-S. Yu, "Vehicle Detection in Tunnel using Gaussian Mixture Model and Mathematical Morphological Processing," J. of the Korea Institute of Electronic Communication Sciences, vol. 7, no. 5, 2012, pp. 967-974.
  4. S.-H. Lee, "Fast motion Estimation with Adaptive Search Range Adjustment using Motion Activities of Temporal and Spatial Neighbor Blocks," J. of the Korea Institute of Electronic Communication Sciences, vol. 5, no. 4, 2010, pp. 372-378.
  5. S.-W. Kim, Y.-S. Choi, and H.-K. Yang, "Analysis of Human Activity Using Silhouette and Feature Parameters," J. of the Korean Institute of Maritime Information and Communication Sciences, vol. 15, no. 2, 2011, pp. 923-926.
  6. S.-W. Kim, Y.-S. Choi, and H.-K. Yang, "Analysis of Human Activity Using motion Vector," J. of the Korean Institute of Maritime Information and Communication Sciences, vol. 15, no. 2, 2011, pp. 157-160. https://doi.org/10.6109/jkiice.2011.15.1.157
  7. C. Stauffer and W. Grimson, "Adaptive background mixture models for real-time tracking," In CVPR 99, Fort Collins, FL, June vol. 2, 1999, pp. 246-252.
  8. Z. Zivkovic and F. van der Heijden, "Efficient adaptive density estimation per image pixel for the task of background subtraction," Pattern Recognition Letters, vol. 27, no. 7, 2006, pp. 773-780. https://doi.org/10.1016/j.patrec.2005.11.005
  9. J. Sanders and E. Kandrot, CUDA by Example : An Introdution to General Purpose GPU Programming. Boston : Addison Wesley, 2010.