DOI QR코드

DOI QR Code

Investigation of Cement Matrix Compositions of Nanosilica Blended Concrete

  • Published : 2014.09.30

Abstract

The use of pozzolanic materials in concrete mixtures can enhance the mechanical properties and durability of concrete. By reactions with pozzolanic materials and calcium hydroxide in cement matrix, calcium-silicate-hydrate (C-S-H) increases and calcium hydroxide decreases in cement matrix of concrete. Consequently, the volume of solid materials increases. The pozzolanic particles also fill spaces between clinker grains, thereby resulting in a denser cement matrix and interfacial transition zone between cement matrix and aggregates; this lowers the permeability and increases the compressive strength of concrete. Moreover, the total contents of alkali in concrete are reduced by replacing cements with pozzolanic materials; this prevents cracks due to alkali-aggregate reaction (AAR). In this study, nanosilica is incorporated in cement pastes. The differences of microstructural compositions between the hydrated cements with and without nanosilica are examined using nanoindentation, XRDA and $^{29}Si$ MAS NMR. The results can be used for a basic research to enhance durability of concrete slab tracks and concrete railway sleepers.

References

  1. Neville, A. M. and Brooks, J. J. (1987). Concrete Technology, vol. 1. Singapore: Longman Singapore Publishers Ltd.
  2. Metha, P. K. and Monteiro, P. J. M. (1993). Concrete: Structure, Properties, and Materials, 3rd, McGraw-Hill, New York, USA.
  3. Diamond, S. (1976). "Cement Paste Microstructure-an Overview at Several Levels", Paper presented at: Hydraulic cement pastes; their structure and properties. Tapton Hall, University of Sheffield.
  4. Larbi, J. A. (1993). "Microstructure of the Interfacial Zone Around Aggregate Particles in Concrete", Heron Vol. 38, No. 1, pp. 1-69.
  5. Jennings, H. M. (2000). "A Model for the Microstructure of Calicum Silicate Hydrate in Cement Paste", Cement and Concrete Research, Vol. 30, pp. 101-116. https://doi.org/10.1016/S0008-8846(99)00209-4
  6. Taylor, H. F. W. (1997). Cement Chemistry, 2nd, Thomas Telford, London, UK.
  7. Kim, J. J., Moon, J., Youm, K.-S., Lee, H.-E., and Lim, N.-H. (2014). "Analysis of Microstructure in Cement Matrix of Nanosilica Blendded Concrete", Proceedings of KSR2014S, Changwon-si, Korea.
  8. ASTM-C150 (2009) Standard Specification for Portland Cement, ASTM, USA.
  9. Kim, J. J., Rahman, M. K., Al-Majed, A. A., Al-Zahrani, M. M., and Reda Taha, M.M. (2013). "Nanosilica Effects on Composition and Silicate Polymerization in Hardened Cement Paste Cured Under High Temperature and Pressure", Cement and Concrete Composites, Vol. 43, pp. 78-85. https://doi.org/10.1016/j.cemconcomp.2013.07.002
  10. Kim, J. J., Foley, E. M., and Reda Taha, M. M. (2013). "Nano-mechanical characterization of synthetic calcium-silicate-hydrate (C-S-H) with varying CaO/SiO2 mixture ratios", Cement and Concrete Composites, Vol. 36, pp. 65-70. https://doi.org/10.1016/j.cemconcomp.2012.10.001
  11. Emmy, E. M., Kim, J. J., and Reda Taha, M. M. (2012). "Synthesis and nano-mechanical characterization of calciumsilicate- hydrate (C-S-H) made with 1.5 CaO/SiO2 mixture", Cement and Concrete Research, Vol. 42, pp. 1225-1232. https://doi.org/10.1016/j.cemconres.2012.05.014
  12. Hertz, H. (1881). "On the Contact of Elastic Solids", Journal fur die Reine und Angewandte Mathematik, Vol. 92, pp. 156-171.
  13. Fischer-Cripps, A. C. (2004) Nanoindentation. New York: Springer Science+Business Media, LLC.
  14. Tweedie, C. A. and Van Vliet, K. J. (2006). "Contact creep compliance of viscoelastic materials via nanoindentation", Journal of Materials Research, Vol. 21, No. 6, pp. 1576-1589. https://doi.org/10.1557/jmr.2006.0197
  15. Riccardia, B. and Montanari, R. (2004). "Indentation of Metals by a Flat-Ended Cylindrical Punch", Materials Science & Engineering A, 381(1-2), pp. 281-291. https://doi.org/10.1016/j.msea.2004.04.041
  16. Ulm, F.-J., Vandamme, M., Bobko, C., Ortega, J. A., Tai, K., and Ortiz, C. (2007). "Statistical Indentation Techniques for Hydrated Nanocomposites: Concrete, Bone, Shale", Journal of the American Ceramic Society, Vol. 90, No. 9, pp. 2677-2692. https://doi.org/10.1111/j.1551-2916.2007.02012.x
  17. Oliver, W. and Pharr, G. (1992). "An Improved Technique for Determining Hardness and Elastic Modulus using Load and Displacement Sensing Indentation Experiments", Journal of Materials Research, Vol. 7, No. 6, pp. 1564-1583. https://doi.org/10.1557/JMR.1992.1564
  18. Gunther, H. (1995). NMR spectroscopy: basic principles, concepts, and applications in chemistry, Wiley.
  19. Kim, J. J., Rahman, M. K., and Reda Taha, M. M. (2012). "Examining Microstructural Composition of Hardened Cement Paste Cured under High Temperature and Pressure using Nanoindentation and 29Si MAS NMR", Applied Nanoscience, Vol. 2, pp. 445-456. https://doi.org/10.1007/s13204-012-0058-z
  20. Lippmaa, E. and Magi, M. (1980). "Structural Studies of Silicates by Solid-state High-resolution 29Si NMR", American Chemical Society, Vol. 102, pp. 4889-4893. https://doi.org/10.1021/ja00535a008
  21. Wieker, W., Grimmer, A.-R., Winkler, A., Magi, M., Tarmak, M., and Lippmaa, E. (1982). "Solid-state high-resolution 29Si NMR spectroscopy of synthetic $14{\AA}$, 11and $9{\AA}$ tobermorites", Cement and Concrete Research, Vol. 12, pp. 333-339. https://doi.org/10.1016/0008-8846(82)90081-3
  22. Saout, G. L., Le'colier, E., Rivereau, A. and Zanni, H. (2006). "Chemical Structure of Cement Aged at Normal and Elevated Temperatures and Pressures, Part II: Low Permeability Class G Oilwell Cement", Cement and Concrete Research, Vol. 36, pp. 428-433. https://doi.org/10.1016/j.cemconres.2005.11.005
  23. Saout, G. L., Le'colier, E., Rivereau, A. and Zanni, H. (2006). "Chemical Structure of Cement Aged at Normal and Elevated Temperatures and Pressures, Part I: Class G oil-Well Cement", Cement and Concrete Research, Vol. 36, pp. 71-78. https://doi.org/10.1016/j.cemconres.2004.09.018
  24. Meister, A. (2009). Deconvolution Problems in Nonparameteric Statistics, Lecture Notes in Statistics, Springer-Verlag, Berlin Heidelberg, Germany.
  25. Jennings, H. M. and Tennis, P. D. (1994). "Model for the Developing Microstructure in Portland Cement Pastes", Journal of the American Ceramic Society, Vol. 77, No. 12, pp. 3161-3172. https://doi.org/10.1111/j.1151-2916.1994.tb04565.x
  26. Mondal, P., Shah, S. P., Marks, L. D., and Gaitero, J. J. (2010). "Comparative Study of the Effects of Microsilica and Nanosilica in Concrete." J Transp Res Board: Nanotech CemConcr, Vol. 1, No. 2141, pp.6-9.
  27. Kim, J. J., Fan, T., and Reda Taha, M. M. (2010). "Homogenization Model Examining the Effect of Nanosilica on Concrete Strength and Stiffness", J Transp Res Board: Nanotech CemConcr, Vol. 1, No. 2141, pp. 28-35.