DOI QR코드

DOI QR Code

Standardized Uptake Values Highly Correlate with Tumor Size and Fuhrman Grade in Patients with Clear Cell Renal Cell Carcinoma

  • Polat, Emre Can (Faculty of Medicine, Istanbul Medipol University) ;
  • Otunctemur, Alper (Okmeydani Training and Research Hospital) ;
  • Ozbek, Emin (Okmeydani Training and Research Hospital) ;
  • Besiroglu, Huseyin (Okmeydani Training and Research Hospital) ;
  • Dursun, Murat (Okmeydani Training and Research Hospital) ;
  • Ozer, Kutan (Department of Urology, Faculty of Medicine, Izmir Katip Celebi University, Izmir Ataturk Training and Research Hospital) ;
  • Horsanali, Mustafa Ozan (Department of Urology, Faculty of Medicine, Izmir Katip Celebi University, Izmir Ataturk Training and Research Hospital)
  • Published : 2014.10.11

Abstract

Background: We investigated the correlation between standardized uptake value (SUVmax), tumor size and Fuhrman grade in patients with renal cell carcinoma (RC). Materials and Methods: We retrospectively analyzed the data of 54 patients with clear cell renal cell carcinoma histopathologically diagnosed who underwent fluorine-18 fluoro-2 deoxyglucose positron emission tomography/computed tomography (F-18 FDG PET/CT) between January 2005 and March 2014. Results: Avarage tumor sizes were $5.64{\pm}1.85$, $6.85{\pm}2.24$ and $7.98{\pm}2.45$ in low, medium and high SUVmax groups, respectively. The Spearman's correlation coefficient between the tumor size and SUVmax was 0.385 (p=0.004) and between the Fuhrman grade and SUVmax was 0.578 (p<0.001). Conclusions: SUVmax appears highly correlated with tumor size and Fuhrman grade in patients with histopathologically confirmed clear cell RC. Multicenter studies are needed to provide larger series for more accurate results.

References

  1. Aide N, Cappele O, Bottet P, et al (2003). Efficiency of [18F] FDG PET in characterising renal cancer and detecting distant metastases: a comparison with CT. Eur J Nucl Med Mol Imaging, 30, 1236-45. https://doi.org/10.1007/s00259-003-1211-4
  2. Ak I, Can C (2005). F-18 FDG PET in detecting renal cell carcinoma. Acta Radiol, 46, 895-9. https://doi.org/10.1080/02841850500335002
  3. Bachor R, Kotzerke J, Gottfried HW, et al (1996). Positron emission to-mography in diagnosis of renal cell carcinoma. Urologe A, 35, 146-50.
  4. Bertagna F, Motta F, Bertoli M, et al (2013). Role of F18-FDGPET/CT in restaging patients affected by renal carcinoma. Nucl Med Rev Cent East Eur, 16, 3-8. https://doi.org/10.5603/NMR.2013.0002
  5. Bomanji JB, Costa DC, Ell PJ (2001). Clinical role of positron emission tomography in oncology. Lancet Oncol, 2, 157-164. https://doi.org/10.1016/S1470-2045(00)00257-6
  6. Downey RJ, Akhurst T, Gonen M, et al (2004). Preoperative F-18 fluorodeoxyglucose-positron emission tomography maximal standardized uptake value predicts survival after lung cancer resection. J Clin Oncol, 22, 3255-60. https://doi.org/10.1200/JCO.2004.11.109
  7. Ferlay J, Autier P, Boniol M, et al (2007). Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol, 18, 581-92.
  8. Goldberg MA, Mayo-Smith WW, Papanicolaou N, Fischman AJ, Lee MJ (1997). FDG PET characterization of renal masses:preliminary experience. Clin Radiol, 52, 510-5. https://doi.org/10.1016/S0009-9260(97)80327-3
  9. Harada S, Sato S, Suziki E, et al (2011). The Usefulness of Pre-Radiofrequency Ablation SUVmax in 18F-FDG PET/CT to Predict the Risk of a Local Recurrence of Malignant Lung Tumors after Lung Radiofrequency Ablation. Acta Med Okayama, 65, 395-402.
  10. Horner MJ, Ries LAG, Krapcho M, et al (2010). SEER cancer statistics review, 1975-2006. Bethesda, MD: National Cancer Institute.
  11. Israel GM, Bosniak MA (2008). Pitfalls in renal mass evaluation and how to avoid them. Radiographics, 28, 1325-38. https://doi.org/10.1148/rg.285075744
  12. Jayson M, Sanders H (1998). Increased incidence of serendipitously discovered renal cell carcinoma. Urology, 51, 203-5. https://doi.org/10.1016/S0090-4295(97)00506-2
  13. Kang DE, White RL, Jr., Zuger JH, Sasser HC, Teigland CM (2004). Clinical use of fluorode-oxyglucose F-18 positron emission tomography for detection of renal cell carcinoma. J Urol, 171, 1806-9. https://doi.org/10.1097/01.ju.0000120241.50061.e4
  14. Khandani AH, Cowey CL, Moore DT, Gohil H, Rathmell WK (2012). Primary renal cell carcinoma: relationship between 18F-FDG uptake and response to neoadjuvant sorafenib. Nucl Med Commun, 33, 967-73. https://doi.org/10.1097/MNM.0b013e3283561837
  15. Kocher F, Geimmel S, Hauptmann R, Reske SN (1994). Preoperative lymph node staging in patients with kidney and urinary bladder neoplasm. J Nucl Med, 35, 223.
  16. Kumar R, Chauhan A, Lakhani P, et al (2005). 2-Deoxy-2-[F-18]fluoro-D-glucose-positron emission tomography in characterization of solid renal masses. Mol Imaging Biol, 7, 431-9. https://doi.org/10.1007/s11307-005-0026-z
  17. Lee YY, Choi CH, Kim CJ, et al (2009). The prognostic significance of the SUVmax (maximum standardized uptake value for F-18 fluorodeoxyglucose) of the cervical tumor in PET imaging for eary cervical cancer: Preliminary results. Gynecol Oncol, 115, 65-68. https://doi.org/10.1016/j.ygyno.2009.06.022
  18. Liu NB, Zhu L, Li MH, et al (2013). Diagnostic value of 18F-FDG PET/CT in comparison to bone scintigraphy, CT and 18F-FDG PET for the detection of bone metastasis. Asian Pac J Cancer Prev, 14, 3647-52. https://doi.org/10.7314/APJCP.2013.14.6.3647
  19. Luciani LG, Cestari R, Tallarigo C (2000). Incidental renal cell carcinoma: age and stage characterization and clinical implications, study of 1092 patients (1982-1997). Urology, 56, 58-62. https://doi.org/10.1016/S0090-4295(00)00534-3
  20. Ma JB, Chen EC, Song YP, et al (2013). Prognostic significance of 18F-fluorodeoxyglucose positron emission tomography (PET)-based parameters in neoadjuvant chemoradiation treatment of esophageal carcinoma. Asian Pac J Cancer Prev, 14, 2477-81. https://doi.org/10.7314/APJCP.2013.14.4.2477
  21. Majhail NS, Urbain JL, Albani JM, et al (2003). F-18 fluorodeoxyglucose positron emission Tomography in the evaluation of distant metastases from renal cell carcinoma. J Clin Oncol, 21, 3995-4000. https://doi.org/10.1200/JCO.2003.04.073
  22. Martinez de Llano SR, Delgado-Bolton RC, Jimenez-Vicioso A, et al (2007). Meta-analysis of the diagnostic performance of 18F-FDG PET in renal cell carcinoma. Rev Esp Med Nucl, 26, 19-29. https://doi.org/10.1157/13097378
  23. Miyakita H, Tokunaga M, Onda H, et al (2002). Significance of 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) for detection of renal cell carcinoma and immunohistochemical glucose transporter 1 (GLUT-1) expression in the cancer. Int J Urol, 9, 15-8. https://doi.org/10.1046/j.1442-2042.2002.00416.x
  24. Miyauchi T, Brown RS, Grossman HB, Wojno K, Wahl RL (1996). Correlation between visualization of primary renal cancer by FDG-PET and histopathological findings. J Nucl Med, 37, 64.
  25. Montravers F, Grahek D, Kerrou K, et al (2000). Evaluation of FDG up-take by renal malignancies (primary tumor or metastases) us-ing a coincidence detection gamma camera. J Nucl Med, 41, 78-84.
  26. Motzer RJ, Bander NH, Nanus DM (1996). Renal-cell carcinoma. N Engl J Med, 335, 865-75. https://doi.org/10.1056/NEJM199609193351207
  27. Nakatani K, Nakamoto Y, Saga T, Higashi T, Togashi K (2009). The potential clinical value of FDG-PET for recurrent renal cell carcinoma. Eur J Radiol, 79, 29-35.
  28. Nakhoda Z, Torigian DA, Saboury B, Hofheinz F, Alavi A (2013). Assessment of the diagnostic performance of 18F-FDG-PET/CT for detection and characterization of solid renal malignancies. Hell J Nucl Med, 16, 19-24.
  29. Namura K, Minamimoto R, Yao M, et al (2010). Impact of maximum Standardized Uptake Value (SUVmax) evaluated by 18-Fluoro-2-deoxy-Dglucose positron emission tomography/computed tomography (18F-FDG-PET/CT) on survival for patients with advanced renal cell carcinoma: a preliminary report. BMC Cancer, 10, 667. https://doi.org/10.1186/1471-2407-10-667
  30. Ng CS, Wood CG, Silverman PM, et al (2008). Renal cell carcinoma: diagnosis, staging, and surveillance. Am J Roentgenol, 191, 1220-32. https://doi.org/10.2214/AJR.07.3568
  31. Ozulker T, Ozulker F, Ozbek E, Ozpacaci T (2011). A prospective diag-nostic accuracy study of F-18 fluorodeoxyglucosepositron emission tomography/computed tomography in the evaluation of indeterminate renal masses. Nucl Med Commun, 32, 265-72. https://doi.org/10.1097/MNM.0b013e3283442e3b
  32. Powles T, Ell PJ (2007). Does PET imaging have a role in renal cancers after all? Lancet Oncol, 8, 279-81. https://doi.org/10.1016/S1470-2045(07)70080-3
  33. Powles T, Murray I, Brock C, Oliver T, Avril N (2007). Molecular positron emission tomography and PET/CT imaging in urological malignancies. Eur Urol, 51, 1511-20. https://doi.org/10.1016/j.eururo.2007.01.061
  34. Ramdave S, Thomas GW, Berlangieri SU, et al (2001). Clinical role of F-18 fluorodeoxyglucose positron emission tomography for de-tection and management of renal cell carcinoma. J Urol, 166, 825-30. https://doi.org/10.1016/S0022-5347(05)65845-4
  35. Sasaki R, Komaki R, Macapinlac H, et al (2005). [18F] fluorodeoxyglucose uptake by positron emission tomographypredicts outcome of non-small-cell lung cancer. J Clin Oncol, 23, 1136-43. https://doi.org/10.1200/JCO.2005.06.129
  36. Uzel EK, Ekmekcioglu O, Elicin O, Halac M, Uzel OE (2013). Is FDG -PET-CT a valuable tool in prediction of persistent disease in head and neck cancer. Asian Pac J Cancer Prev, 14, 4847-51. https://doi.org/10.7314/APJCP.2013.14.8.4847
  37. Wahl RL, Harney J, Hutchins G, Grossman HB (1991). Imaging of renal cancer using positron emission tomography with 2-deoxy-2-(18-F)-fluoro-Dglucose: pilot animal and human studies. J Urol, 146, 1470-4.
  38. Zhu SH, Zhang Y, Yu YH, et al (2013). FDG PET-CT in nonsmall cell lung cancer: relationship between primary tumor FDG uptake and extensional or metastatic potential. Asian Pac J Cancer Prev, 14, 2925-9. https://doi.org/10.7314/APJCP.2013.14.5.2925

Cited by

  1. Clinical role of early dynamic FDG-PET/CT for the evaluation of renal cell carcinoma vol.26, pp.6, 2016, https://doi.org/10.1007/s00330-015-4026-3
  2. 18F-FDG PET/CT in Bladder Cancer vol.41, pp.12, 2016, https://doi.org/10.1097/RLU.0000000000001403
  3. Evaluation of renal cell carcinoma histological subtype and fuhrman grade using 18F-fluorodeoxyglucose-positron emission tomography/computed tomography vol.27, pp.11, 2017, https://doi.org/10.1007/s00330-017-4875-z
  4. Role of contrast-enhanced 18F-FDG PET/CT imaging in the diagnosis and staging of renal tumors vol.39, pp.12, 2018, https://doi.org/10.1097/MNM.0000000000000915
  5. Sarcomatoid renal cell carcinoma: a case report and literature review vol.19, pp.1, 2018, https://doi.org/10.1186/s12882-018-0884-7