DOI QR코드

DOI QR Code

Predicting the suitable habitat of the Pinus pumila under climate change

기후변화에 의한 눈잣나무의 서식지 분포 예측

  • Park, Hyun-Chul (Department of Landscape Architecture, Graduate School, Kangwon National University) ;
  • Lee, Jung-Hwan (Institute of Environmental at Kangwon National University) ;
  • Lee, Gwan-Gyu (Department of Landscape Architecture, Kangwon National University)
  • Received : 2014.06.23
  • Accepted : 2014.10.13
  • Published : 2014.10.31

Abstract

This study was performed to predict the future climate envelope of Pinus pumila, a subalpine plant and a Climate-sensitive Biological Indicator Species (CBIS) of Korea. P. pumila is distributed at Mt. seorak in South Korea. Suitable habitat were predicted under two alternative RCPscenarios (IPCC AR5). The SDM used for future prediction was a Maxent model, and the total number of environmental variables for Maxent was 8. It was found that the distribution range of P. pumila in the South Korean was $38^{\circ}7^{\prime}8^{{\prime}{\prime}}N{\sim}38^{\circ}7^{\prime}14^{{\prime}{\prime}}N$ and $128^{\circ}28^{\prime}2^{{\prime}{\prime}}E{\sim}128^{\circ}27^{\prime}38^{{\prime}{\prime}}E$ and 1,586m~1,688m in altitude. The variables that contribute the most to define the climate envelope are altitude. Climate envelope simulation accuracy was evaluated using the ROC's AUC. The P. pumila model's 5-cv AUC was found to be 0.99966. which showed that model accuracy was very high. Under both the RCP4.5 and RCP8.5 scenarios, the climate envelope for P. pumila is predicted to decrease in South Korea. According to the results of the maxent model has been applied in the current climate, suitable habitat is $790.78km^2$. The suitable habitats, are distributed in the region of over 1,400m. Further, in comparison with the suitable habitat of applying RCP4.5 and RCP8.5 suitable habitat current, reduction of area RCP8.5 was greater than RCP4.5. Thus, climate change will affect the distribution of P. pumila. Therefore, governmental measures to conserve this species will be necessary. Additionally, for CBIS vulnerability analysis and studies using sampling techniques to monitor areas based on the outcomes of this study, future study designs should incorporate the use of climatic predictions derived from multiple GCMs, especially GCMs that were not the one used in this study. Furthermore, if environmental variables directly relevant to CBIS distribution other than climate variables, such as the Bioclim parameters, are ever identified, more accurate prediction than in this study will be possible.

Acknowledgement

Supported by : 강원대학교

References

  1. 공우석. 2000. 설악산 아고산대 식생과 경관의 지생태, 대한지리학회지, 35(2), 77-87.
  2. 공우석. 2006. 한반도에 자생하는 소나무과 나무의 생물지리, 대한지리학회, 41(1), 73-93.
  3. 곽태식, 기정훈, 김영은, 전해민, 김시진. 2008. 지구 온난화에 따른 국내 과수작물 재배지 변화에 대한 GIS 예측 모형 연구-여섯 가지 열대 및 아열대 과수를 중심으로, 한국공간정보시스템학회 논문지, 10(3), 93-106.
  4. 권혁수, 류지은, 서창완, 김지연, 도재화, 서민환, 박종화. 2012b. 국지적으로 분포하는 식물에 대한 기후 및 환경변수 영향, 한국환경복원녹화기술학회지, 15(6), 17-27. https://doi.org/10.13087/kosert.2012.15.6.017
  5. 권혁수, 서창환, 박종화. 2012a. 지리산 지역의 생물종 분포모형 구축 및 종풍부도 평가, 한국지형공간정보학회지, 20(3), 11-18. https://doi.org/10.7319/kogsis.2012.20.3.011
  6. 김지연, 서창환, 권혁수, 류지은, 김명진. 2012. 전국자연환경조사 자료를 이용한 종분포모형 연구, 환경영향평가, 21(4), 593-607.
  7. 송원경, 김은영. 2012. 고라니 서식지 분석을 위한 기계학습식 종분포모형 비교, 대한원격탐사학회지, 28(1), 171-181.
  8. 송정호, 임효인, 홍경락, 장경환, 홍용표. 2012. 설악산 대청봉 눈잣나무(Pinus pumila (Pall.) Regel) 집단의 유전다양성과 공간적 유전구조, 한국자원식물학회지, 25(4), 407-415. https://doi.org/10.7732/kjpr.2012.25.4.407
  9. 윤종학, Katsuhiro Nakao, 박찬호, 이병윤, 오경희. 2011. 기후변화에 따른 한반도 난온대 상록활엽수의 잠재 생육지 변화 예측, 한국환경생태학회, 25(4). 590- 600.
  10. 이동근, 김재욱. 2007. 한반도 지역의 기후변화에 의한 고산, 아고산 식생 취약성 평가, 한국환경복원녹화기술학회지, 10(6), 110-119.
  11. 정재민, 손성원, 김상용, 박광우, 김성식. 2013. 한반도 아고산대 특산, 희귀식물 설앵초의 유전적 다양성과 지리적 분화, 식물분류학회지, 43(3), 236-243. https://doi.org/10.11110/kjpt.2013.43.3.236
  12. Austin, M.. 2007. Species distribution models and ecological theory: a critical assessment and some possible new approaches, Ecological modeling, 200(1), 1-19. https://doi.org/10.1016/j.ecolmodel.2006.07.005
  13. Dirnbock, T., S. Dullinger and G. Grabherr. 2003. A regional impact assessment of climate and land use change on alpine vegetation, Journal of Biogeography, 30(3), 401-417. https://doi.org/10.1046/j.1365-2699.2003.00839.x
  14. Farjon, A.. 2013. The IUCN Red List of Threatened Species, Version 2014. 2.
  15. Franklin, J.. 2009. Mapping species distributions: spatial inference and prediction, Cambridge University Press.
  16. Gonzalez, C., A. Paz and C. Ferro. 2014. Predicted altitudinal shifts and reduced spatial distribution of Leishmania infantum vector species under climate change scenarios in Colombia, Actatropica, 129, 83-90.
  17. IPCC. 2007. Climate Change 2007: the Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate change, Cambridge University Press.
  18. Lee, B. Y., G. H. Nam, J. H. Yun, G. Y. Cho, J. S. Lee, J. H. Kim and K. H. Oh. 2010. Biological indicators to monitor responses against climate change in Korea, Korean Journal of Plant Taxonomy, 40(4), 202-207.
  19. Parmesan, C. and G. Yohe. 2003. A globally coherent fingerprint of climate change impacts across natural systems, Nature, 421(6918), 37-42. https://doi.org/10.1038/nature01286
  20. Pearson, R. G., C. J. Raxworthy, M. Nakamura, A. T. Peterson. 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar, Journal of Biogeography, 34(1), 102-117.
  21. Phillips, S. J., R. P. Anderson and R. E. Schapire. 2006. Maximum entropy modeling of species geographic distributions, Ecological modelling, 190(3), 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  22. Rochefort, R. M., R. L. Little, A. Woodward and D. L. Peterson. 1994. Changes in sub-alpine tree distribution in western North America: a review of climatic and other causal factors, The Holocene, 4(1), 89-100. https://doi.org/10.1177/095968369400400112
  23. Saavedra, F., D. W. Inouye, M. V. Price and J. Harte. 2003. Changes in flowering and abundance of Delphinium nuttallianum (Ranunculaceae) in response to a subalpine climate warming experiment, Global Change Biology, 9(6), 885-894. https://doi.org/10.1046/j.1365-2486.2003.00635.x
  24. Scott, J. M., P. J. Heglund, M. L. Morrison, J. B. Haufler, M. G. Raphael, W. A. Wall and F. B. Samson. 2002. Predicting Species Occurrences: Issues of Accuracy and Scale, Island Press, Washington, DC.
  25. Seo, C. H., J. H. Thorn, H. N. Lee and W. Thuiller. 2009. Scale effects in species distribution models: implications for conservation planning under climate change, Biology Letters, 5(1), 39-43. https://doi.org/10.1098/rsbl.2008.0476
  26. Sydes, M. A. and R. Peakall. 1998. Extensive clonality in the endangered shrub Haloragodendron lucasii (Haloragaceae) revealed by allozymes and RAPDs, Molecular Ecology, 7(1), 87-93. https://doi.org/10.1046/j.1365-294x.1998.00314.x
  27. Thuiller, W.. 2003. BIOMOD-optimizing predictions of species distributions and projecting potential future shifts under global change, Global Change Biology, 9(10), 1353-1362. https://doi.org/10.1046/j.1365-2486.2003.00666.x
  28. Woodward, F. I.. 1987. Climate and plant distribution, Cambridge University Press.

Cited by

  1. Predicting the Potential Habitat, Host Plants, and Geographical Distribution of Pochazia shantungensis (Hemiptera: Ricaniidae) in Korea vol.54, pp.3, 2015, https://doi.org/10.5656/KSAE.2015.06.0.011
  2. Potential climate change effects on tree distributions in the Korean Peninsula: Understanding model & climate uncertainties vol.353, 2017, https://doi.org/10.1016/j.ecolmodel.2016.10.007
  3. La implantación de las Gotas de Leche en España (1902-1935): un estudio a partir de la prensa histórica vol.68, pp.1, 2016, https://doi.org/10.3989/asclepio.2016.10
  4. Predicting the Potential Habitat and Risk Assessment of Amaranthus patulus using MaxEnt vol.36, pp.4, 2018, https://doi.org/10.11626/KJEB.2018.36.4.672