DOI QR코드

DOI QR Code

Phloroglucinol Attenuates Free Radical-induced Oxidative Stress

  • So, Mi Jung (Department of Food Science and Nutrition, and Research Institute of Ecology for the Elderly, Pusan National University) ;
  • Cho, Eun Ju (Department of Food Science and Nutrition, and Research Institute of Ecology for the Elderly, Pusan National University)
  • Received : 2014.05.14
  • Accepted : 2014.07.22
  • Published : 2014.09.30

Abstract

The protective role of phloroglucinol against oxidative stress and stress-induced premature senescence (SIPS) was investigated in vitro and in cell culture. Phloroglucinol had strong and concentration-dependent radical scavenging effects against nitric oxide (NO), superoxide anions ($O_2{^-}$), and hydroxyl radicals. In this study, free radical generators were used to induce oxidative stress in LLC-PK1 renal epithelial cells. Treatment with phloroglucinol attenuated the oxidative stress induced by peroxyl radicals, NO, $O_2{^-}$, and peroxynitrite. Phloroglucinol also increased cell viability and decreased lipid peroxidation in a concentration-dependent manner. WI-38 human diploid fibroblast cells were used to investigate the protective effect of phloroglucinol against hydrogen peroxide ($H_2O_2$)-induced SIPS. Phloroglucinol treatment attenuated $H_2O_2$-induced SIPS by increasing cell viability and inhibited lipid peroxidation, suggesting that treatment with phloroglucinol should delay the aging process. The present study supports the promising role of phloroglucinol as an antioxidative agent against free radical-induced oxidative stress and SIPS.

Acknowledgement

Supported by : Pusan National University

References

  1. Jenner P. 2003. Oxidative stress in Parkinson's disease. Ann Neurol 53: S26-S36. https://doi.org/10.1002/ana.10483
  2. Kovacic P, Jacintho JD. 2001. Mechanisms of carcinogenesis: focus on oxidative stress and electron transfer. Curr Med Chem 8: 773-796. https://doi.org/10.2174/0929867013373084
  3. Valko M, Morris H, Mazur M, Rapta P, Bilton RF. 2001. Oxygen free radical generating mechanisms in the colon: do the semiquinones of vitamin K play a role in the aetiology of colon cancer? Biochim Biophys Acta 1527: 161-166. https://doi.org/10.1016/S0304-4165(01)00163-5
  4. Ridnour LA, Isenberg JS, Espey MG, Thomas DD, Roberts DD, Wink DA. 2005. Nitric oxide regulates angiogenesis through a functional switch involving thrombospondin-1. Proc Natl Acad Sci USA 102: 13147-13152. https://doi.org/10.1073/pnas.0502979102
  5. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. 2006. Free radicals, metals and antioxidants in oxidative stressinduced cancer. Chem Biol Interact 160: 1-40. https://doi.org/10.1016/j.cbi.2005.12.009
  6. Dhalla NS, Temsah RM, Netticadan T. 2000. Role of oxidative stress in cardiovascular diseases. J Hypertens 18: 655-673. https://doi.org/10.1097/00004872-200018060-00002
  7. Sayre LM, Smith MA, Perry G. 2001. Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr Med Chem 8: 721-738. https://doi.org/10.2174/0929867013372922
  8. Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A. 2006. Biomarkers of oxidative damage in human disease. Clin Chem 52: 601-623. https://doi.org/10.1373/clinchem.2005.061408
  9. Ames BN, Shigenaga MK, Hagen TM. 1993. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90: 7915-7922. https://doi.org/10.1073/pnas.90.17.7915
  10. Steinmetz KA, Potter JD. 1996. Vegetables, fruit, and cancer prevention: a review. J Am Diet Assoc 96: 1027-1039. https://doi.org/10.1016/S0002-8223(96)00273-8
  11. Meydani M, Lipman RD, Han SN, Wu D, Beharka A, Martin KR, Bronson R, Cao G, Smith D, Meydani SN. 1998. The effect of long-term dietary supplementation with antioxidants. Ann NY Acad Sci 854: 352-360. https://doi.org/10.1111/j.1749-6632.1998.tb09915.x
  12. Balboa EM, Conde E, Moure A, Falque E, Dominguez H. 2013. In vitro antioxidant properties of crude extracts and compounds from brown algae. Food Chem 138: 1764-1785. https://doi.org/10.1016/j.foodchem.2012.11.026
  13. Dellabella M, Milanese G, Muzzonigro G. 2005. Randomized trial of the efficacy of tamsulosin, nifedipine and phloroglucinol in medical expulsive therapy for distal ureteral calculi. J Urol 174: 167-172. https://doi.org/10.1097/01.ju.0000161600.54732.86
  14. Queguineur B, Goya L, Ramos S, Martin MA, Mateos R, Bravo L. 2012. Phloroglucinol: antioxidant properties and effects on cellular oxidative markers in human HepG2 cell line. Food Chem Toxicol 50: 2886-2893. https://doi.org/10.1016/j.fct.2012.05.026
  15. Rosa A, Deiana M, Atzeri A, Corona G, Incani A, Melis MP, Appendino G, Dessi MA. 2007. Evaluation of the antioxidant and cytotoxic activity of arzanol, a prenylated $\alpha$-pyronephloroglucinol etherodimer from Helichrysum italicum subsp. microphyllum. Chem Biol Interact 165: 117-126. https://doi.org/10.1016/j.cbi.2006.11.006
  16. Hashida W, Tanaka N, Kashiwada Y, Sekiya M, Ikeshiro Y, Takaishi Y. 2008. Tomoeones A-H, cytotoxic phloroglucinol derivatives from Hypericum ascyron. Phytochemistry 69: 2225-2230. https://doi.org/10.1016/j.phytochem.2008.04.026
  17. Kang KA, Zhang R, Chae S, Lee SJ, Kim J, Kim J, Jeong J, Lee J, Shin T, Lee NH, Hyun JW. 2010. Phloroglucinol (1,3,5-trihydroxybenzene) protects against ionizing radiation-induced cell damage through inhibition of oxidative stress in vitro and in vivo. Chem Biol Interact 185: 215-226. https://doi.org/10.1016/j.cbi.2010.02.031
  18. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. 1982. Analysis of nitrate, nitrite, and [$^{15}N$]nitrate in biological fluids. Anal Biochem 126: 131-138. https://doi.org/10.1016/0003-2697(82)90118-X
  19. Sreejayan, Rao MN. 1997. Nitric oxide scavenging by curcuminoids. J Pharm Pharmacol 49: 105-107. https://doi.org/10.1111/j.2042-7158.1997.tb06761.x
  20. Ewing JF, Janero DR. 1995. Microplate superoxide dismutase assay employing a nonenzymatic superoxide generator. Anal Biochem 232: 243-248. https://doi.org/10.1006/abio.1995.0014
  21. Gutteridge JM. 1987. Ferrous-salt-promoted damage to deoxyribose and benzoate. The increased effectiveness of hydroxyl-radical scavengers in the presence of EDTA. Biochem J 243: 709-714. https://doi.org/10.1042/bj2430709
  22. Yokozawa T, Cho EJ, Hara Y, Kitani K. 2000. Antioxidative activity of green tea treated with radical initiator 2,2'-azobis (2-amidinopropane) dihydrochloride. J Agric Food Chem 48: 5068-5073. https://doi.org/10.1021/jf000253b
  23. Yokode M, Kita T, Kikawa Y, Ogorochi T, Narumiya S, Kawai C. 1988. Stimulated arachidonate metabolism during foam cell transformation of mouse peritoneal macrophages with oxidized low density lipoprotein. J Clin Invest 81: 720-729. https://doi.org/10.1172/JCI113377
  24. Yokozawa T, Satoh A, Cho EJ, Kashiwada Y, Ikeshiro Y. 2005. Protective role of Coptidis Rhizoma alkaloids against peroxynitrite-induced damage to renal tubular epithelial cells. J Pharm Pharmacol 57: 367-374. https://doi.org/10.1211/0022357055470
  25. Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  26. Yagi K. 1976. A simple fluorometric assay for lipoperoxide in blood plasma. Biochem Med 15: 212-216. https://doi.org/10.1016/0006-2944(76)90049-1
  27. Ragan MA, Glombitza KW. 1986. Phlorotannins, brown algal polyphenols. Prog Phycol Res 4: 129-141.
  28. Kang KA, Lee KH, Chae S, Zhang R, Jung MS, Ham YM, Baik JS, Lee NH, Hyun JW. 2006. Cytoprotective effect of phloroglucinol on oxidative stress induced cell damage via catalase activation. J Cell Biochem 97: 609-620. https://doi.org/10.1002/jcb.20668
  29. Ishii R, Horie M, Saito K, Arisawa M, Kitanaka S. 2001. Inhibitory effects of phloroglucinol derivatives from Mallotus japonicus on nitric oxide production by a murine macrophagelike cell line, RAW 264.7, activated by lipopolysaccharide and interferon-$\gamma$. Biochim Biophys Acta 1568: 74-82. https://doi.org/10.1016/S0304-4165(01)00203-3
  30. Halliwell B. 1987. Oxidants and human disease: some new concepts. FASEB J 1: 358-364.
  31. Halliwell B, Zhao K, Whiteman M. 1999. Nitric oxide and peroxynitrite. The ugly, the uglier and the not so good: a personal view of recent controversies. Free Radic Res 31: 651-669. https://doi.org/10.1080/10715769900301221
  32. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. 1990. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87: 1620-1624. https://doi.org/10.1073/pnas.87.4.1620
  33. Miki M, Tamai H, Mino M, Yamamoto Y, Niki E. 1987. Freeradical chain oxidation of rat red blood cells by molecular oxygen and its inhibition by $\alpha$-tocopherol. Arch Biochem Biophys 258: 373-380. https://doi.org/10.1016/0003-9861(87)90358-4
  34. Patel RP, McAndrew J, Sellak H, White CR, Jo H, Freeman BA, Darley-Usmar VM. 1999. Biological aspects of reactive nitrogen species. Biochim Biophys Acta 1411: 385-400. https://doi.org/10.1016/S0005-2728(99)00028-6
  35. Blough NV, Zafiriou OC. 1985. Reaction of superoxide with nitric oxide to form peroxonitrite in alkaline aqueous solution. Inorg Chem 24: 3502-3504. https://doi.org/10.1021/ic00216a003
  36. Terao K, Niki E. 1986. Damage to biological tissues induced by radical initiator 2,2'-azobis(2-amidinopropane) dihydrochloride and its inhibition by chain-breaking antioxidants. Free Radic Biol Med 2: 193-201. https://doi.org/10.1016/S0748-5514(86)80070-8
  37. Knight JA. 2000. The biochemistry of aging. Adv Clin Chem 35: 1-62.
  38. Oliveira BF, Nogueira-Machado JA, Chaves MM. 2010. The role of oxidative stress in the aging process. Sci World J 10: 1121-1128. https://doi.org/10.1100/tsw.2010.94
  39. Frippiat C, Chen QM, Zdanov S, Magalhaes JP, Remacle J, Toussaint O. 2001. Subcytotoxic $H_2O_2$ stress triggers a release of transforming growth factor-$\beta{1}$, which induces biomarkers of cellular senescence of human diploid fibroblasts. J Biol Chem 276: 2531-2537. https://doi.org/10.1074/jbc.M006809200
  40. Frippiat C, Dewelle J, Remacle J, Toussaint O. 2002. Signal transduction in $H_2O_2$-induced senescence-like phenotype in human diploid fibroblasts. Free Radic Biol Med 33: 1334-1346. https://doi.org/10.1016/S0891-5849(02)01044-4
  41. Chen QM. 2000. Replicative senescence and oxidant-induced premature senescence: beyond the control of cell cycle checkpoints. Ann NY Acad Sci 908: 111-125.
  42. Toussaint O, Medrano EE, von Zglinicki T. 2000. Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol 35: 927-945. https://doi.org/10.1016/S0531-5565(00)00180-7
  43. Morliere P, Santus R. 1998. Pro-oxidant role of superoxide dismutase in ultraviolet-A-induced lipid peroxidation in cultured normal human skin fibroblasts. Eur J Biochem 256: 184-189. https://doi.org/10.1046/j.1432-1327.1998.2560184.x

Cited by

  1. Phloroglucinol Attenuates the Cognitive Deficits of the 5XFAD Mouse Model of Alzheimer’s Disease vol.10, pp.8, 2015, https://doi.org/10.1371/journal.pone.0135686
  2. Assessment of anticancer activity: A comparison of dose–response effect of ethyl acetate and methanolic extracts of Pergularia daemia (Forsk) vol.13, pp.1, 2016, https://doi.org/10.1016/S1348-8643(15)00039-7
  3. Phloroglucinol protects retinal pigment epithelium and photoreceptor against all-trans-retinal-induced toxicity and inhibits A2E formation vol.20, pp.9, 2016, https://doi.org/10.1111/jcmm.12857
  4. Phloroglucinol Protects INS-1 Pancreatic β-cells Against Glucotoxicity-Induced Apoptosis vol.29, pp.11, 2015, https://doi.org/10.1002/ptr.5407
  5. Enolate-Forming Phloretin Pharmacophores: Hepatoprotection in an Experimental Model of Drug-Induced Toxicity vol.357, pp.3, 2016, https://doi.org/10.1124/jpet.115.231001
  6. Effects of bioactive compounds on senescence and components of senescence associated secretory phenotypes in vitro vol.8, pp.7, 2017, https://doi.org/10.1039/C7FO00161D
  7. Anticancer effects of seaweed compounds fucoxanthin and phloroglucinol, alone and in combination with 5-fluorouracil in colon cells 2017, https://doi.org/10.1080/15287394.2017.1357297
  8. Supramolecular hydrogen-bonding patterns of co-crystals containing the active pharmaceutical ingredient (API) phloroglucinol andN-heterocycles vol.72, pp.3, 2016, https://doi.org/10.1107/S2052520616004406
  9. Enolate-Forming Compounds as a Novel Approach to Cytoprotection vol.29, pp.12, 2016, https://doi.org/10.1021/acs.chemrestox.6b00300
  10. Hydrogen Indirectly Suppresses Increases in Hydrogen Peroxide in Cytoplasmic Hydroxyl Radical-Induced Cells and Suppresses Cellular Senescence vol.20, pp.2, 2019, https://doi.org/10.3390/ijms20020456