A Study on the Peel Strength of Silane-treated Silicas-filled Epoxy Adhesives

실란처리 되어진 실리카가 첨가된 에폭시 접착제의 접착박리강도에 관한 연구

  • Choi, Bo-Kyung (R&D Division, Korea Institute of Carbon Convergence Technology) ;
  • Kim, Hong-Gun (Department of Carbon Fusion Engineering, Jeonju University) ;
  • Seo, Min-Kang (R&D Division, Korea Institute of Carbon Convergence Technology) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University)
  • Received : 2014.07.16
  • Accepted : 2014.08.26
  • Published : 2014.10.10


In this paper, the effect of silane-treated silicas and epoxidized soybean oil (ESBO) addition on adhesion properties of silicas-filled epoxy adhesives was examined. The silicas were treated by ${\gamma}$-methacryloxy propyltrimethoxy silane (MPS), ${\gamma}$-glycidoxy propyl trimethoxy silane (GPS), and ${\gamma}$-mercapto propyl trimethoxy silane (MCPS). Surface and structural properties of the adhesives were determined by using scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FT-IR). The t-peel strength of the adhesives was estimated using the universal testing machine (UTM). And, the equilibrium spreading pressure, surface free energy, and specific surface area were investigated by BET methods with $N_2$/77 K adsorption. As a result, the peel strength of the adhesives was increased in the presence of silane-treated silicas in the adhesives compared to that of untreated silicas. This result indicated that the silane coupling agent played an important role in improving the dispersion of silicas in epoxy adhesives. And, the adhesives treated by MCPS were superior to the others in adhesion.


Grant : 바이오매스를 이용한 전지전자용 친환경 수지 제조 및 접착제 개발


  1. J. H. Kim, K. Y. Choi, H. J. Joo, F. L. Jin, and S. J. Park, A study on the water resistance and thermo-mechanical behaviors of epoxy adhesives, Elastomer, 40, 166-173 (2005).
  2. N. W. Pu, Y. Y. Peng, P. C. Wang, C. Y. Chen, J. N. Shi, Y. M. Liu, M. D. Ger, and C. L. Chang, Application of nitrogen-doped graphene nanosheets in electrically conductive adhesives, Carbon, 67, 449-456 (2014).
  3. K. W. Yu and D. H. Kim, Effect of amino modicied siloxanes with two differnet molecular weights on the properties of epoxy composites for adhesives for micro electronics, Appl. Chem. Eng., 22, 104-108 (2011).
  4. J. G. Kim, I. B. Choi, D. G. Lee, and I. S. Seo, Flame and silane treatments for improving the adhesive bonding characteristics of aramid/epoxy composites, Compos. Struct., 93, 2696-2705 (2011).
  5. P. Hu, X. Han, W. D. Li, L. Li, and Q. Shao, Research on the static strength perfocmance of adhesive single lap joints subjected to extreme temperature environment for automotive industry, Int. J. Adhes. Adhes., 41, 119-126 (2013).
  6. M. Ochi, R. Takahashi, and A. Terauchi, Phase structure and mechanical and adhesion properties of epoxy/silica hybrids, Polymer, 42, 5151-5158 (2001).
  7. K. S. Kim, S. Y. Oh, E. S. Kim, H. C. Shin, and S. J. Park, Influence of hydrophobic silica on physical properties of epoxy nanocomposites for epoxy molding compounds, Elastomer Compos., 45, 12-16 (2010).
  8. A. M. Pereira, P. N. Reis, J. A. Ferreira, and F. V. Antunes, Effect of saline environment on mechanical properties of adhesive joints, Int. J. Adhes. Adhes., 47, 99-104 (2013).
  9. J. Qiu, E. Sakai, L. Lei, Y. Takarada, and S. Murakami, Improving the shear strength by silane treatments of aluminum for direct joining of phenolic resin, J. Mater. Process. Technol., 212, 2406-2412 (2012).
  10. L. Zhu, F. L. Jin, and S. J. Park, Thermal stability and fracture toughness of epoxy resins modified with expoxidized castor oil and $Al_2O_3$ nanoparticles, Bull. Korean Chem. Soc., 33, 2513-2516 (2012).
  11. D. H. Lee, K. W. Yu, and D. H. Kim, Effent of amino modified siloxane on the properties of epoxy composites for MEMS adhesives, Korean Chem. Eng. Res., 47, 203-207 (2009).
  12. S. T. Hong, Y. J. Park, H. J. Kim, and K. Dilger, Development of environmentally friendly semi-structure poly(ethylene/butylene) rubber-based pressure sensitive adhesive, J. Adhes. Interface., 7, 12-18 (2006).
  13. S. M. Kim, C. S. Nam, and K. J. Kim, TMTD, MBTS, and CBS accelerator effects on a silica filled natural rubber compound upon vulcanization Properties, Appl. Chem. Eng., 22, 144-148 (2011).
  14. S. J. Park, K. S. Cho, and S. K. Ryu, Filler-elastomer interactions: influence of oxygen plasma treatment on surface and mechanical properties of carbon black/rubber composites, Carbon, 41, 1437-1442 (2003).
  15. S. J. Park, J. S. Jin, J. R. Lee, and Y. K. Kim, Effect of silane coupling agent treatment on interfacial adhesion of glass fiber-reinforced composites, J. Korean Ind. Eng. Chem., 11, 285-289 (2000).
  16. S. J. Park, J. S. Jun, and J. R. Lee, Enhancement of interfacial adhesion of glass fibers-reinforced unsaturated polyester matrix composites: Effect of ${\gamma}$-methacryloxypropyltrimethoxy silane treatment containing ${\gamma}$-aminopropyltriethoxy silane, J. Korean Ind. Eng., Chem. 12, 143-147 (2001).
  17. H. S. Ryu, Y. S. Lee, J. C. Lee, and K. R. Ha, Modification of silica nanoparticles with bis[3-(triethoxysilylpropyl)]tetrasulfide and their application for SBR nanocomposite, Polymer(Korea), 37, 308-315 (2013).
  18. D. H. Lee and D. H. Kim, Effects of nano silica and siloxane on properties of epoxy composites for adhesion of micro electronic device, Korean Chem. Eng. Res., 47, 332-336 (2009).
  19. M. K. Thakur, R. K. Gupta, and V. K. Thakur, Surface modification of cellulose using silane coupling agent, Carbohydr. Polym., 111, 849-855 (2014).
  20. H. N. Jeon, J. H. Kim, and K. R. Ha, Quantitative analysis of silanization degree of silica nanoparticles modified with bis[3-(trimethoxysilyl) propyl]amine coupling agent, Polymer(Korea), 36, 372-379 (2012).
  21. J. B. Moon, Influence of silane coupling agent treatments on physical properties of rubbery materials, Elastomer, 36, 237-245 (2001).
  22. J. K. Lee, S. Y. Kim, and C. S. Ju, Improvement of tensile strength of polyester resin using silica/chopped glass fiber modified by coupling agent, Korean Chem. Eng. Res., 50, 30-34 (2012).
  23. S. M. Choi, E. K. Lee, and S. Y. Choi, Effects of silane-treated silica on the cure temperature and mechanical properties of elastomeric epoxy, Elastomer, 43, 147-156 (2008).
  24. F. Tan, X. Qiao, J. Chen, and H. Wang, Effects of coupling agents on the properties of epoxy-based electrically conductive adhesives, Int. J. Adhes. Adhes., 26, 406-413 (2006).
  25. S. K. Song, J. H. Kim, K. S. Hwang, and K. R. Ha, Spectroscopic analysis of silica nanoparticles modified with silane coupling agent, Korean Chem. Eng. Res., 49, 181-186 (2011).
  26. J. L. Choi and H. Park, A study on the bonding strength, reactivity and thermal properties of epoxy resin mixed with ESBO, Mokchak Konghak, 35, 36-44 (2007).
  27. Z. Liu, S. Z. Erhan, and J. Xu, Preparation, characterization and mechanical properties of epoxidized soybean oil/clay nanocomposites, Polymer, 46, 10119-10127 (2005).
  28. S. J. Park, F. L. Jin, and J. R. Lee, Thermal and mechanical properties of tetrafunctional epoxy resin toughened with epoxidized soybean oil, Mater. Sci. Eng. A, 374, 109-114 (2004).
  29. F. L. Jin and S. J. Park, Impact-strength improvement of epoxy resins reinforced with a biodegradable polymer, Mater. Sci. Eng. A, 478, 402-405 (2008).
  30. S. J. Park, K. S. Cho, M. Zaborski, and L. Slusarski, Filler-elastomer interactions 5. Effect of silane surface treatment on interfacial adhesion of silica/rubber composites, Polymer(Korea), 26, 445-451 (2002).