Conversion of CO2 and CH4 through Hybrid Reactor Composed of Plasma and Catalyst at Atmospheric Pressure

상압 플라즈마-촉매 하이브리드 반응기를 통한 CO2와 CH4의 전환처리

  • Kim, Tae Kyung (Department of Chemical Engineering, Kangwon National University) ;
  • Nguyen, Duc Ba (Department of Chemical Engineering, Kangwon National University) ;
  • Lee, Won Gyu (Department of Chemical Engineering, Kangwon National University)
  • Received : 2014.07.09
  • Accepted : 2014.08.01
  • Published : 2014.10.10


The conversion reaction of methane and carbon dioxide at an atmospheric pressure plasma reactor filled with Ni-$Al_2O_3$ and Ni-$MgAl_2O_4$ catalyst was performed. Effects of various process parameters such as the applied electric power, reaction gas flow rate, reactor temperature, mixing ratio of reactants and the presence of the catalyst on the reaction between methane and carbon dioxide were analyzed. From the analysis of the contribution of the catalyst in the reaction step, even if the temperature raised to $400^{\circ}C$, there was no spontaneous catalytic conversion of methane and carbon dioxide without plasma discharges. When the catalysts for the conversion of methane and carbon dioxide would be adopted to the plasma reactor, the careful selection of suitable catalysts and process parameters should be essential.


Supported by : 한국연구재단


  1. H. Hokazono and H. Fujimoto, Theoretical analysis of the $CO_2$ molecule decomposition and contaminants yield in transversely excited atmospheric $CO_2$ laser discharge, J. Appl. Phys., 62, 1585-1594 (1987).
  2. U. Roland, F. Holzer, and F. D. Kopinke, Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds: Part 2. Ozone decomposition and deactivation of ${\gamma}-Al_2O_3$, Appl. Catal. B: Environ., 58, 217-226 (2005).
  3. M. W. Li, G. H. Xu, Y. L. Tian, L. Chen, and H. F. Fu, Carbon dioxide reforming of methane using DC corona discharge plasma reaction, J. Phys. Chem. A, 108, 1687-1693 (2004).
  4. Y. P. Zhang, Y. Li, Y. Wang, C. J. Liu, and B. Eliasson, Plasma methane conversion in the presence of carbon dioxide using dielectric-barrier discharges, Fuel Process. Technol., 83, 101-109 (2003).
  5. S. L. Yao, M. Okumoto, A. Nakayama, and E. Suzuki, Plasma reforming and coupling of methane with carbon dioxide, Energy Fuels, 15, 1295-1299 (2001).
  6. T. K. Kim and W. G. Lee, Conversion characteristics of $CH_4$ and $CO_2$ in an atmospheric pressure plasma reactor, Appl. Chem. Eng., 22, 653-657 (2011).
  7. T. Jiang, Y. Li, C. J. Liu, G. H. Xu, B. Eliasson, and B. Xue, Plasma methane conversion using dielectric-barrier discharges with zeolite A, Catal. Today, 72, 229-235 (2002).
  8. X. Tao, F. Qi, Y. Yin, and X. Dai, $CO_2$ reforming of $CH_4$ by combination of thermal plasma and catalyst, Int. J. Hydrogen Energy, 33, 1262-1265 (2008).
  9. X. Tao, M. Bai, Q. Wu, Z. Huang, Y. Yin, and X. Dai, $CO_2$ reforming of $CH_4$ by binode thermal plasma, Int. J. Hydrogen Energy, 34, 9373-9378 (2009).
  10. H. Le, L. L. Lobban, and R. G. Mallinson, Some temperature effects on stability and carbon formation in low temperature ac plasma conversion of methane, Catal. Today, 89, 15-20 (2004).
  11. T. K. Kim and W. G. Lee, Reaction between methane and carbon dioxide to produce syngas in dielectric barrier discharge system, J. Ind. Eng. Chem., 18, 1710-1714 (2012).
  12. D. Li, X. Li, M. Bai, X. Tao, S. Shang, X. Dai, and Y. Yin, $CO_2$ reforming of $CH_4$ by atmospheric pressure glow discharge plasma: A high conversion ability, Int. J. Hydrogen Energy, 34, 308-313 (2009).
  13. A. Indarto, J. W. Choi, H. Lee, and H. K. Song, Effect of additive gases on methane conversion using gliding arc discharge, Energy, 31, 2986-2995 (2006).
  14. Y. Li, G. H. Xu, C. J. Liu, B. Eliasson, and B. Z. Xue, Co-generation of syngas and higher hydrocarbons from $CO_2$ and $CH_4$ using dielectric-barrier discharge: Effect of electrode materials, Energy Fuels, 15, 299-302 (2001).
  15. H. K. Song, H. Lee, J. W. Choi, and B. K. Na, Effect of electrical pulse forms on the $CO_2$ reforming of methane using atmospheric dielectric barrier discharge, Plasma Chem. Plasma Process., 24, 57-72 (2004).
  16. R. Martinez, E. Romero, C. Guimon, and R. Bilbao, $CO_2$ reforming of methane over coprecipitated Ni-Al catalysts modified with lanthanum, Appl. Catal. A: Gen., 274, 139-149 (2004).
  17. F. Pompeo, N. Nichio, O. Ferretti, and D. Resasco, Study of Ni catalysts on different supports to obtain synthesis gas, Int. J. Hydrogen Energy, 30, 1399-1405 (2005).
  18. S. H. Jung, S. M. Park, S. H. Park, and S. D. Kim, Surface modification of fine powders by atmospheric pressure plasma in a circulating fluidized bed reactor, Ind. Eng. Chem. Res., 43, 5483-5488 (2004).
  19. M. Kraus, B. Eliasson, U. Kogelschatz, and A. Wokaun, $CO_2$ reforming of methane by the combination of dielectric-barrier discharges and catalysis, Phys. Chem. Chem. Phys., 3, 294-300 (2001).
  20. K. Zhang, B. Eliasson, and U. Kogelschatz, Direct conversion of greenhouse gases to synthesis gas and $C_4$ hydrocarbons over zeolite HY promoted by a dielectric-barrier discharge, Ind. Eng. Chem. Res., 41, 1462-1468 (2002).
  21. H. L. Chen, H. M. Lee, S. H. Chen, and M. B. Chang, Review of packed-bed plasma reactor for ozone generation and air pollution control, Ind. Eng. Chem. Res., 47, 2122-2130 (2008).
  22. S. Futamura, H. Kabashima, and H. Einaga, Steam reforming of aliphatic hydrocarbons with nonthermal plasma, IEEE Trans. Ind. Appl., 40, 1476-1481 (2004).
  23. D. B. Nguyen and W. G. Lee, Effect of ambient condition for coaxial dielectric barrier discharge reactor on $CO_2$ reforming of $CH_4$ to syngas, J. Ind. Eng. Chem., 20, 972-978 (2014).
  24. R. Marques, S. D. Costa, and P. D. Costa, Plasma-assisted catalytic oxidation of methane: On the influence of plasma energy deposition and feed composition, Appl. Catal. B: Environ., 82, 50-57 (2008).