Synthesis, Photovoltaic Properties and Side-chain Effect of Copolymer Containing Phenothiazine and 2,1,3-Benzothiadiazole

Phenothiazine과 2,1,3-Benzothiadiazole을 포함한 Copolymer의 합성 및 Side-chain 치환에 따른 Photovoltaic 특성 연구

  • Received : 2014.07.08
  • Accepted : 2014.08.20
  • Published : 2014.10.10


In this study, three kinds of polymers based on phenothiazine-benzothiadiazole were synthesized by a Suzuki coupling reaction, and the various side-chains were substituted at the nitrogen of phenothiazine. The optical and electrochemical properties of synthesized polymers were analyzed. The results indicate that their absorption ranged from 300 to 700 nm, and also confirmed the ideal highest occupied molecular orbital (HOMO) energy level was about -5.4 eV with low band-gap energy. Photovoltaic devices were fabricated using a photoactive layer composed of a blended solution of the polymer and $PC_{71}BM$ in ortho-dichlorobenzene The device with P2HDPZ-bTP-OBT containing the branched side-chain and long chain showed the best performance; the maximum power conversion efficiency of this device was 2.4% (with $V_{OC}$ : 0.74 V, $J_{SC}$ : $6.9mA/cm^2$, FF : 48.0%).


Supported by : Korea Institute of Industrial Technology Evaluation and Planning


  1. Y. Sun, Q. Wu, and G. Shi, Graphene based new energy materials, Energy & Environ. Sci., 4, 1113-1132 (2011).
  2. M. Kenisarin and K. Mahkamov, Solar energy storage using phase change materials, Renewable and Sustainable Energy Reviews, 44, 1913-1965 (2007).
  3. C. G. Granqvist, Solar energy materials, Adv. Mater., 15, 1789-1803 (2003).
  4. M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, Design rules for donors in bulk-heterojunction solar cells-towards 10% energy-conversion efficiency, Adv. Mater., 18, 789-794 (2006).
  5. J. M. Nunzi, Organic photovoltaic materials and devices, Comptes Rendus Physique, 3, 523-542 (2002).
  6. J. Lewis, Material challenge for flexible organic devices, Materials today, 9, 38-45 (2006).
  7. J. A. Hauch, P. Schilinsky, S. A. Choulis, R. Childers, M. Biele, and C. J. Brabec, Flexible organic P3HT : PCBM bulk-heterojunction modules with more than 1 year outdoor lifetime, Sol. Energy Mater. Sol. Cells, 92, 727-731 (2008).
  8. M. Al-Ibrahim, H. K. Roth, U. Whokhavets, G. Gobsch, and S. Sensfuss, Sensfuss, Flexible large area polymer solar cells based on poly(3-hexylthiophene)/fullerene, Sol. Energy Mater. Sol. Cells, 85, 13-20 (2005).
  9. H. J. Song, D. H. Kim, E. J. Lee, and D. K. Moon, Conjugated polymers consisting of quinacridone and quinoxaline as donor materials for organic photovoltaics: orientation and charge transfer properties of polymers formed by phenyl structures with a quinoxaline derivative, J. Mater. Chem. A, 1, 6010-6020 (2013).
  10. S. Roquet, A. Cravino, P. Leriche, O. Aleveque, P. Frere, and J. Roncali, Triphenylamine-thienylenevinylene hybrid systems with internal charge transfer as donor materials for heterojunction solar cells, J. Am. Chem. Soc., 128, 3459-3466 (2006).
  11. R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, and B. de Boer, Polym. Small bandgap polymers for organic solar cells (polymer material development in the last 5 years), Reviews, 48, 531-582 (2008).
  12. S. W. Heo, J. Y. Lee, H. J. Song, J. R. Ku, and D. K. Moon, Patternable brush painting process for fabrication of flexible polymer solar cells, Sol. Energy Mater. Sol. Cells, 95, 3041-3046 (2011).
  13. S. W. Heo, K. W. Song, M. H. Choi, T. H. Sung, and D. K. Moon, Patternable solution process for fabrication of flexible polymer solar cells using PDMS, Sol. Energy Mater. Sol. Cells, 95, 3564-3572 (2011).
  14. Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, Simultaneous enhancement of open-circuit voltage, short-circuit density, and fill factor in polymer solar cells, Adv. Mater., 23, 4636-4643 (2011).
  15. J. Hou, H. Y. Chen, S. Zhang, R. I. Chen, Y. Yang, Y. Wu, and G. Li, Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells, J. Am. Chem. Soc., 131, 15586-15587 (2009).
  16. J. Y. Choi, D. H. Kim, B. Lee, and J. H. Kim, Synthesis and electro-optical properties of ${\pi}$-conjugated polymer based on 10-hexylphenothiazine and aromatic 1,2,4-triazole, Bull. Kor. Chem. Soc., 30, 1933-1938 (2009).
  17. S. K. Son, Y. S. Choi, W. H. Lee, Y. T. Hong, J. R. Kim, W. S. Shin, S. J. Moon, D. H. Hwang, and I. N. Kang, Synthesis and properties of phenothiazylene vinylene-based polymers: new organic semiconductors for filed-effect transistors and solar cells, J. Polym. Sci. Part A Polym. Chem., 48, 635-646 (2010).
  18. L. Y. Yang, C. Wang, L. Q. Li, S. Janietz, A. Wedel, Y. L. Hua, and S. G. Yin, Synthesis and characterization of novel poly(p-phenylenevinylene) derivatives containing phenothiazine-5,5-dioxide moieties, J. Polym. Sci. Part A Polym. Chem., 45, 4291-4299 (2007).
  19. H. Padhy, J. H. Huang, D. Sahu, D. Patra, D. Kekuda, C. W. Chu, and H. C. Lin, Synthesis and applications of low-bandgap conjugated polymers containing phenothiazine donor and various benzodiazole acceptors for polymer solar cells, J. Polym. Sci. Part A Polym. Chem., 48, 4823-4834 (2010).
  20. G. Koeckelberghs, L. De Cremer, A. Persoon, and T. Verbiest, Influence of the substituent and polymerization methodology on the properties of chiral poly(dithieno[3,2-b : 2',3'-d]pyrrole)s, Macromolecules, 40, 4173-4181 (2007).
  21. N. Blouin, A. Michaud, and M. Leclerc, A low-bandgap poly(27-carbazole) derivative for use in high-performance solar cells, Adv. Mater., 19, 2295-2300 (2007).
  22. D. H. Yun, H. S. Yoo, S. W Heo, H. J. Song, D. K. Moon, J. W. Woo, and Y. S. Park, Synthesis and photovoltaic characterization of D/A structure compound based on N-substituted phenothiazine and benzothiadiazole, J. Ind. Eng. Chem., 19, 421-426 (2013).
  23. I. K. Moon, C. S. Choi, and N. J. Kim, React. Photorefractivity of poly[methyl(3-phenothiazine-10-ylpropyl)siloxane] doped with chromosphere and $C_{60}$, Funct. Polym., 68, 910-914 (2008).
  24. S. K. Kim, J. H. Lee, and D. H. Hwang, EL properties of an alternating copolymer composed of phenothiazine and thiophene heterocycles, Synthetic Metals, 152, 201-204 (2005).
  25. M. Sailer, R. A. Gropeanu, and T. J. J. Muller, Practical synthesis of iodo phenothiazines. A facile access to electrophore building blocks, J. Org. Chem., 68, 7509-7512 (2003).
  26. Z. B. Lim, B. Xue, S. Bomma, H. Li, S. Sun, Y. M. Lam, W. J. Belcher, P. C. Dastoor, and A. C. Grimsdale, New moderate bandgap polymers containing alkoxysubstituted-benzo[c][1,2,5]thiadiazole and thiophene-based units, J. Polym. Sci. Part A Polym. Chem., 49, 4387-4397 (2011).
  27. M. Sailer, A. W. Franz, and T. J. J. Muller, Synthesis and electronic properties of monodisperse oligophenothiazines, Chem. Eur. J., 14, 2602-2614 (2008).
  28. M. S. Jung, W. Shin, S. J. Park, H. You, J. B. Park, H. S. Suh, Y. H. Lim, D. Y. Yoon, and J. H. Kim, Synthesis and characterization of thermally cross-linkable hole injection polymer based on poly(10-alkylphenothiazine) for polymer light-emitting diode, Synthetic Metals, 159, 1928-1933 (2009).
  29. P. Ding, C. C. Chu, Y. Zou, D. Xiao, C. Pan, and C. S. Hsu, New low bandgap conjugated polymer derived from 2,7-carbazole and 5,6-bis(octyloxy)-4,7-di(thiophene-2-yl) benzothiadiazole: synthesis and photovoltaic properties, J. Appl. Polym. Sci., 123, 99-107 (2012).
  30. M. Helgesen, S. A. Gevorgyan, F. C. Krebs, and R. A. J. Janssen, Substituted 2,1,3-benzothiadiazole- and thiophene-based polymers for solar cells-introducing a new thermocleavable precursor, Chem. Mater., 21, 4669-4675 (2009).
  31. K. Ranjith, S. K. Swathi, A. Malavika, and P. C. Ramamurthy, Random copolymers consisting of dithienylcyclopentadienone, thiophene and benzothiadiazole for bulk heterojunction solar cells, Sol. Energy Mater. Sol. Cells, 105, 263-271 (2012).
  32. N. Berton, C. Ottone, V. Labet, R. de Bettignies, S. Bailly, A. Grand, C. Morell, S. Sadki, and F. Chandezon, New alternating copolymers of 3,6-carbazoles and dithienylbenzothiadiazoles: synthesis, characterization, and application in photovoltaics, Macromolecular Chem. Phy., 212, 2127-2141 (2011).
  33. E. Wang, L. Hou, Z. Wang, Z. Ma, S. Hellstrom, W. Zhuang, F. Zhang, O. Inganas, and M. R. Andersson, Side-chain architectures of 2,7-carbazole and quinoxaline-based polymers for efficient polymer solar cells, Macromolecules, 44, 2067-2073 (2011).
  34. R. Qin, W. Li, C. Li, C. Du, C. Veit, H. F. Schleiermacher, M. Andersson, Z. Bo, Z. Liu, O. Inganas, U. Wuerfel, and F. Zhang, A planar copolymer for high efficiency polymer solar cells, J. Am. Chem. Soc., 131, 14612-14613 (2009).
  35. Y. Sun, B. Lin, H. Yang, and X. Gong, Improved bulk-heterojunction polymer solar cell performance through optimization of the linker groupin donor-acceptor conjugated polymer, Polymer, 53, 1535-1542 (2012).
  36. B. Zhao, D. Liu, L. Peng, H. Li, P. Shen, N. Xiang, Y. Liu, and S. Tan, Effect of oxadiazole side chains based on alternating fluorene- thiophene copolymers for photovoltaic cells, Eur. Polym. J., 45, 2079-2086 (2009).
  37. S. Agrawal, M. Pastore, G. Marotta, M. A. Reddy, M. Chandrasekharam, and F. de Angelis, Optical properties and aggregation of phenothiazine-based dye-sensitizers for solar cells applications: a combined experimental and computational investigation, J. Phy. Chem. C, 117, 9613-9622 (2013).
  38. S. K. Son, Y. S. Choi, W. H. Lee, Y. T. Hong, J. R. Kim, W. S. Shin, S. J. Moon, D. H. Hwang, and I. N. Kang, Synthesis and properties of phenothiazylene vinylene-based polymers: new organic semiconductors for field-effect transistors and solar cells, J. Polym. Sci. Part A Polym. Chem., 48, 635-646 (2010).
  39. I. H. Jung, J. Y. Yu, E. J. Jeong, J. S. Kim, S. C. Kwon, H. Y. Kong, K. H. Lee, H. Y. Woo, and H. K. Shim, Synthesis and photovoltaic properties of cyclopentadithiophene-based low-bandgap copolymers that contain electron-withdrawing triazole derivatives, Chem. Eur. J. 16, 3743-3752 (2010).
  40. K. Cao, Z. Wu, S. Li, B. Sun, G. Zhang, and Q. Zhang, A low bandgap polymer based on isoindigo and bis(dialkylthienyl) benzodithiophene for organic photovoltaic applications, J. Polym. Sci. Part A Polym. Chem., 51, 94-100 (2013).
  41. D. Sahu, H. Padhy, D. Patra, J. H. Huang, and C. W. Chu, H. C. Triphenylamine-based conjugated polymers with main-chain donors and pendent acceptors for organic photovoltaics, J. Polym. Sci. Part A Polym. Chem. 48, 5812-5823 (2010).
  42. R. Duane, L. Ye, X. Gui, Y. Huang, P. Wang, S. Zhang, J. Zhang, L. Huo, and J. Hou, Application of two-demensional conjugated benzo[1,2-b : 4,5-b']dithiophene in quinoxaline-based photovoltaic polymers, Macromolecules, 45, 3032-3038 (2012).
  43. H. Zhou, L. Yang, S. Stoneking, and W. You, A weak donor-strong acceptor strategy to design ideal polymers for organic solar cells, Appl. Mater. Interfaces, 2, 1377-1383 (2010).
  44. H. J. Song, D. H. Kim, E. J. Lee, S. W. Heo, J. Y. Lee, and D. K. Moon, Conjugated polymer consisting of quinacridone and benzothiadiazole as donor materials for organic photovoltaics: coplanar property of polymer backbone, Macromolecules, 45, 7815-7822 (2012).
  45. K. W. Song, H. J. Song, T. H. Lee, S. W. Heo, and D. K. Moon, An effect on the side chain position of D-${\pi}$-A-type conjugated polymers with $sp^2$-hybridizedorbitalsfororganicphotovoltaics, Polym. Chem., 4, 3225-3235 (2013).
  46. I. Osaka, G. Sauve, R. Zhang, T. Kowalewski, and R. D. Mccullough, Novel thiophene-thiazolothiazole copolymers for organic field-effect transistors, Adv. Mater., 19, 4160-4165 (2007).
  47. L. Liang, J. T. Wang, C. Y. Mei, and W. S. Li, Novel photovoltaic polymers constructed from alternative donor and acceptor units having one mother structure, Polymer, 54, 2278-2284 (2013).
  48. Y. Ie, J. Huang, Y. Uetani, M. Karakawa, and Y. Aso, Synthesis, properties, and photovoltaic performances of donor-acceptor copolymers having dioxocycloalkene-annelated thiophenes as acceptor monomer units, Macromolecules, 45, 4564-4571 (2012).
  49. Y. H. Seo, W. H. Lee, J. H. Park, J. H. Park, C. B. Bae, Y. T. Hong, J. W. Park, and I. N. Kang, Side-chain effects on phenothiazine-based donor-acceptor copolymer properties in organic photovoltaic devices, J. Polym. Sci. Part A Polym. Chem., 50, 649-658 (2012).
  50. J. W. Jo, S. S. Kim, and W. H. Jo, Synthesis of thieno[3,4-d]thiazole-based conjugated polymers and HOMO level tuning for high VOCphotovoltaiccell, Org. Electron., 13, 1322-1328 (2012).

Cited by

  1. Synthesis and Photovoltaic Properties of Conjugated Polymers Having Push-pull Structure according to the Type of Side-chain in the N-Substituted Phenothiazine vol.25, pp.6, 2014,