DOI QR코드

DOI QR Code

A Study on Characterization for Catalytic Oxidation of Nitrogen Monoxide Over Mn/TiO2 Catalyst

Mn/TiO2 촉매를 이용한 일산화질소의 산화반응 특성 연구

  • Kim, Ki Wang (Department of Environmental Energy Systems Engineering, Graduate school of Kyonggi University) ;
  • Lee, Sang Moon (Department of Environmental Energy Systems Engineering, Graduate school of Kyonggi University) ;
  • Hong, Sung Chang (Department of Environmental Energy Systems Engineering, Graduate school of Kyonggi University)
  • 김기왕 (경기대학교 일반대학원 환경에너지공학과) ;
  • 이상문 (경기대학교 일반대학원 환경에너지공학과) ;
  • 홍성창 (경기대학교 일반대학원 환경에너지공학과)
  • Received : 2014.06.17
  • Accepted : 2014.07.18
  • Published : 2014.10.10

Abstract

In this study, NO oxidation reaction using $Mn/TiO_2$ catalysts was investigated. NO oxidation results revealed that the different trend was observed upon physicochemical properties of $TiO_2$ and interactions between Mn and $TiO_2$ support. $Mn/TiO_2(A)$ catalyst has a superior NO oxidation activity, which increased with decreased space velocity and increased Mn amounts from 10 to 30 wt%. The results indicated that the SCR activity could increase by the fast SCR reaction process using the $Mn/TiO_2(A)$ catalyst located in front of the SCR unit.

References

  1. A. Fritz and V. Pitchon, The current state of research on automotive lean NOx catalysis, Appl. Catal. B, 13, 1 (1997). https://doi.org/10.1016/S0926-3373(96)00102-6
  2. P. Forzatti, Present status and perspectives in de-NOx SCR catalysis, Appl. Catal. A, 222, 221 (2001). https://doi.org/10.1016/S0926-860X(01)00832-8
  3. S. H. Hong, J. Y. Lee, S. P. Cho, and S. C. Hong, Demonstration of Low Temperature SCR System, Prospectives of Industrial Chemistry, 8, 2 (2005).
  4. D. Rehder, Transport, Accumulation, and Physiological Effects of Vanadium, Detoxification of Heavy Metals, 30, 205 (2011). https://doi.org/10.1007/978-3-642-21408-0_11
  5. M. Kang, E. D. Park, J. M. Kim, and J. E. Yie, Cu-Mn mixed oxides for low temperature NO reduction with $NH_3$, Catal. today, 111, 236 (2006). https://doi.org/10.1016/j.cattod.2005.10.032
  6. F. Kapteijn, L. Singoredjo, and A. Andreini, Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia, Appl. Catal. B, 3, 173 (1994). https://doi.org/10.1016/0926-3373(93)E0034-9
  7. X. Tang, J. Hao, W. Xu, and J. Li, Low temperature selective catalytic reduction of $NO_X$ with $NH_3$ over amorphous $MnO_X$ catalysts prepared by three methods, Catal. Commun., 8, 329 (2007). https://doi.org/10.1016/j.catcom.2006.06.025
  8. T. S. Park, S. K. Jeong, S. H. Hong, and S. C. Hong, Selective catalytic reduction of nitrogen oxides with $NH_3$ over natural manganese ore at low temperature, Ind. Eng. Chem. Res., 40, 4491 (2001). https://doi.org/10.1021/ie010218+
  9. G. Qi, R. T. Yang, and R. MnOX-$CeO_2$ mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with $NH_3$ at low temperatures, Chang, Appl. Catal. B, 51, 93 (2004). https://doi.org/10.1016/j.apcatb.2004.01.023
  10. G. Qi and R. T. Yang, Performance and kinetics study for low-temperature SCR of NO with $NH_3$ over $MnO_X-CeO_2$ catalyst, J. Catal., 217, 434 (2003). https://doi.org/10.1016/S0021-9517(03)00081-2
  11. M. Kang, E. D. Park, J. M. Kim, and J. E. Yie, Manganese oxide catalysts for $NO_X$ reduction with $NH_3$ at low temperatures, Appl. Catal. A, 327, 261 (2007). https://doi.org/10.1016/j.apcata.2007.05.024
  12. W. S. Kijlstra, J. C. M. L. Daamen, J. M. van de Graaf, B. van der Linden, E. K. Poels, and A. Bliek, Inhibiting and deactivating effects of water on the selective catalytic reduction of nitric oxide with ammonia over $MnO_X/Al_2O_3$, Appl. Catal. B, 7, 337 (1996). https://doi.org/10.1016/0926-3373(95)00052-6
  13. A. Z. Ma and W. Grunert, Selective catalytic reduction of NO by ammonia over Fe-ZSM-5 catalysts, Chem. Commun., 71 (1999).
  14. W. Sjoerd Kijlstra, M. Biervliet, E. K. Poels, and A. Bliek, Deactivation by $SO_2\;of\;MnO_X/Al_2O_3$ catalysts used for the selective catalytic reduction of NO with $NH_3$ at low temperatures, Appl. Catal. B, 16, 327 (1998). https://doi.org/10.1016/S0926-3373(97)00089-1
  15. L. Singoredjo, R. Korver, F. Kapteijn, and J. Moulijn, Alumina supported manganese oxides for the low-temperature selective catalytic reduction of nitric oxide with ammonia, Appl. Catal. B, 1, 297 (1992). https://doi.org/10.1016/0926-3373(92)80055-5
  16. G. Qi and R. T. Yang, Ultra-active Fe/ZSM-5 catalyst for selective catalytic reduction of nitric oxide with ammonia, Appl. Catal. B, 60, 13 (2005). https://doi.org/10.1016/j.apcatb.2005.01.012
  17. J. Li, J. Chen, R. Ke, C. Luo, and J. Hao, Effects of precursors on the surface Mn species and the activities for NO reduction over $MnO_X/TiO_2$ catalysts, Catal. Commun., 8, 1896 (2007). https://doi.org/10.1016/j.catcom.2007.03.007
  18. Z Wu, R Jin, H Wang, and Y. Liu, Effect of ceria doping on $SO_2$ resistance of $Mn/TiO_2$ for selective catalytic reduction of NO with $NH_3$ at low temperature, Catal. Commun., 10, 935-939 (2009). https://doi.org/10.1016/j.catcom.2008.12.032
  19. Z. Wu, B. Jiang, Y. Liu, W. Zhao, and B. Guan, Low-temperature selective catalytic reduction of NO on $MnO_X/TiO_2$ prepared by different methods, J. Hazard. Mater., 145, 488 (2007). https://doi.org/10.1016/j.jhazmat.2006.11.045
  20. B. Jiang, Y. Liu, and Z. Wu, Low-temperature selective catalytic reduction of NO on $MnO_X/TiO_2$ prepared by different methods, J. Hazard. Mater., 162, 1249 (2009). https://doi.org/10.1016/j.jhazmat.2008.06.013
  21. P. G. Smirniotis, P. M. Sreekanth, D. A. Pena, and R. G. Jenkins, Manganese oxide catalysts supported on $TiO_2,\;Al_2O_3,\;and\;SiO_2$: A comparison for low-temperature SCR of NO with $NH_3$, Ind. Eng. Chem. Res., 45, 6436 (2006). https://doi.org/10.1021/ie060484t
  22. F. Kapteijn, A. D. V. Langeveld, J. A. Moulijn, and A. Andrein, Alumina-supported manganese oxide catalysts: I. Characterization: effect of precursor and loading, J. Catal., 150, 94 (1994). https://doi.org/10.1006/jcat.1994.1325
  23. G. Madia, M. Elsener, M. Koebel. F. Raimondi, and A. Wokaun, Thermal stability of vanadia-tungsta-titania catalysts in the SCR process, Appl. Catal B, 39, 181 (2002). https://doi.org/10.1016/S0926-3373(02)00099-1
  24. T. Sekiya, S. Kamei, M. Hanakawa, and S. Kurita, Raman spectroscopy and phase transition of anatase $TiO_2$ under high pressure, J. Phys. Chem. Soilds, 62, 717 (2001). https://doi.org/10.1016/S0022-3697(00)00229-8
  25. P. R. Ettireddy, N. Ettireddy, S. Mamedov, P. Boolchand, and P. G. Smirniotic, Surface characterization studies of $TiO_2$ supported manganese oxide catalysts for low temperature SCR of NO with $NH_3$, Appl. Catal. B, 76, 123 (2007). https://doi.org/10.1016/j.apcatb.2007.05.010
  26. D. A. Pena, B. S. Uphade, and P. G. Smirniotis, $TiO_2$-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with $NH_3$: I. Evaluation and characterization of first row transition metals, J. catal, 221, 421 (2004). https://doi.org/10.1016/j.jcat.2003.09.003
  27. I. Giakoumelou, C. Fountzoula, C. Kordulis, and A. Boghosian, Molecular structure and catalytic activity of $V_2O_5/TiO_2$ catalysts for the SCR of NO by $NH_3$: In situ Raman spectra in the presence of O-2, $NH_3$, NO, $H_2,\;H_2O,\;and\;SO_2$, J, Catal 239:1 (2006). https://doi.org/10.1016/j.jcat.2006.01.019
  28. K. H. Park, S. M. Lee, S. S. Kim, D. W. Kwon, and S. C. Hong, Reversibility of Mn Valence State in $MnO_X/TiO_2$ Catalysts for Low-temperature Selective Catalytic Reduction for NO with $NH_3$, Catal Lett, 143:246-253 (2013). https://doi.org/10.1007/s10562-012-0952-8
  29. A. Bahamonde, A. Beretta, P. Avila, and E. Tronconi, An Experimental and Theoretical Investigation of the Behavior of a Monolithic Ti-VW-Sepiolite Catalyst in the Reduction of $NO_X$ with $NH_3$, Ind. Eng. Chem. Res., 35, 2516 (1996). https://doi.org/10.1021/ie9507179