Nitrogen Doping Characterization of ZnO Prepared by Atomic Layer Deposition

원자층 증착법으로 성장된 ZnO 박막의 질소 도핑에 대한 연구

  • Kim, Doyoung (School of Electricity and Electronics, Ulsan College)
  • 김도영 (울산과학대학교 전기전자공학부)
  • Received : 2014.08.20
  • Accepted : 2014.09.15
  • Published : 2014.10.01


For feasible study of opto-electrical application regarding to oxide semiconductor, we implemented the N doped ZnO growth using a atomic layer deposition technique. The p-type ZnO deposition, necessary for ZnO-based optoelectronics, has considered to be very difficulty due to sufficiently deep acceptor location and self-compensating process on doping. Various sources of N such as $N_2$, $NH_3$, NO, and $NO_2$ and deposition techniques have been used to fabricate p-type ZnO. Hall measurement showed that p-type ZnO was prepared in condition with low deposition temperature and dopant concentration. From the evaluation of photoluminescence spectroscopy, we could observe defect formation formed by N dopant. In this paper, we exhibited the electrical and optical properties of N-doped ZnO thin films grown by atomic layer deposition with $NH_3OH$ doping source.


Supported by : 울산과학대학교


  1. D. Hwang, M. Oh, J. Lim, and S. Park, J. Phys. D: Appl. Phys., 40, R387 (2007).
  2. K. G. Saw, K. Ibrahim, Y. T. Lim, and M. K. Chai, Thin Solid Films, 515, 2879 (2007).
  3. S. Y. Huang, S. Xu, J. W. Chai, Q. J. Cheng, J. D. Long, and K. Ostrikov, Mat. Lett., 63, 972 (2009).
  4. Z. Zi-Wen, H. Li-Zhong, Z. He-Qiu, S. Jing-Chang, B. Ji-Ming, L. Hong-Wei, H. Bing-Zhi, Y. Dong-Qi, C. Xi, and F. Qiang, Chin. Phys. Lett., 26, 057305 (2009).
  5. Y. R. Ryu, S. Zhu!, D. C. Look, J. M. Wrobel, H. M. Jeong, and H. W. White, J. Crystal Growth, 216, 330 (2000).
  6. W. Xiang-Hu, Y. Bin, W. Zhi-Peng, S. De-Zhen1, Z. Zhen-Zhong, L. You-Ming, Z. Ji-Ying, and F. Xi-Wu, Chin. Phys. Lett., 25, 2993 (2008).
  7. J. G. Lu, Z. Z. Ye, F. Zhuge, Y. J. Zeng, B. H. Zhao, and L. P. Zhu, Appl. Phys. Lett., 85, 3134 (2004).
  8. V. Vaithianathan, B. T. Lee, and S. S. Kim, Appl. Phys. Lett., 86, 062101 (2005).
  9. Y. Zhu, S. Lin, Y. Zhang, Z. Ye, Y. Lu, J. Lu, and B. Zhao, Appl. Surf. Sci., 255, 6201 (2009).
  10. P. Cao, D. X. Zhao, J. Y. Zhang, D. Z. Shen, Y. M. Lu, B. Yao, B. H. Li, Y. Bai, and X. W. Fan, Appl. Surf. Sci., 254, 2900 (2008).
  11. M. Godlewski, E. Guziewicz, J. Szade, A. Wojcik-Glodowska, L. Wachnicki, T. Krajewski, K. Kopalko, R. Jakiela, S. Yatsunenko, E. Przezdziecka, P. Kruszewski, N. Huby, G. Tallarida, and S. Ferrari, Microelec. Eng., 85, 2434 (2008).
  12. M. C. Tarun, M. Zafar Iqbal, and M. D. McCluskey, AIP Advances, 1, 022105 (2011)
  13. M. Gomi, N. Oohira, K. Ozaki, and M. Koyano, Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap., 42, 481 (2003).
  14. J. Lu, Z. Ye, L. Wang, J. Huang, and B. Zhao, Mat. Sci. Semi. Proc., 5, 491 (2003).
  15. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys., 79, 7983 (1996).
  16. Y. J. Lin, C. L. Tsai, Y. M. Lu, and C. J. Liu, J. Appl. Phys., 99, 4 (2006).
  17. S. B. Zhang, S. H. Wei, and A. Zunger, Phys. Rev. B, 63, 7 (2001).
  18. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, Appl. Phys. Lett., 68, 403 (1996).
  19. K. H. Lee, N. I. Cho, H. G. Nam, and E. J. Yun, J. Korean Phys. Soc., 53, 3273 (2008).
  20. U. Choppali and B. P. Gorman, Opt. Mater., 31, 143 (2008).
  21. J. P. Zhnag, L. D. Zhang, L. Q. Zhu, Y. Zhang, M. Liu, and X. J. Wang, J. Appl. Phys., 102, 114903 (2007).