DOI QR코드

DOI QR Code

Temperature Control System Technology of Possible Output Error Detection with Expanded A/D Converting Technology

A/D 컨버터 확장기술을 응용한 온도제어장치 기술

  • Park, Sung-Back (Department of Nano Engineering, Dong-A University) ;
  • Shin, Hoon-Kyu (National Institute for Nanomaterials Technology, Pohang University of Science and Technology) ;
  • Kwon, Young-Soo (Department of Nano Engineering, Dong-A University)
  • 박성백 (동아대학교 나노공학과) ;
  • 신훈규 (포항공과대학교 나노융합기술원) ;
  • 권영수 (동아대학교 나노공학과)
  • Received : 2014.09.02
  • Accepted : 2014.09.24
  • Published : 2014.10.01

Abstract

In this study, the temperature control device was designed for the study in order to detect the output in frequency of temperature, and the study confirmed accurate temperature values treated systemically by using expanded A/D converting Technology. The control technology of functional sensor included the output error Detection. For the future study, it is necessary to implement a control device by building multiple circuits integrally with different types of sensors such as a automatically and intelligent notification function sensors.

References

  1. W. Namgoong, IEEE Transactions on Wireless Communications, 2, 502 (2003). https://doi.org/10.1109/TWC.2003.811177
  2. B. D. Gronholz, M. A. Temple, R. F. Mills, W. H. Mims, and T. D. Niedzwieck, 2005 International Conference on Wireless Networks, Communications, and Mobile Computing, 1071 (2005).
  3. J. Hou, C. Wu, J. Tan, Q. Wang, and Y. Zhou, International Symposium on Intelligent Information Technology Application Workshops, 8, 554 (2005).
  4. C. L. Tseng, J A. Jiang, R. G. Lee, F. M. Lu, C. S. Ouyang, Y. S. Chen, and C. H. Chang, Computers and Electronics in Agriculture, 53, 45 (2006). https://doi.org/10.1016/j.compag.2006.03.005
  5. M. De Volder, J. Coosemans, R. Puers, and D. Reynaerts, Sensors and Actuators A: Physical, 141, 192 (2008). https://doi.org/10.1016/j.sna.2007.07.012
  6. M. Musallam, P. P. Acarnley, C. M. Johnson, L. Pritchard, and V. Pickert, Control Engineering Practice, 16, 1438 (2008). https://doi.org/10.1016/j.conengprac.2008.04.001
  7. X. J. Zhang, C. Y. Yu, S. Li, Y. M. Zheng, and F. Xiao, Applied Thermal Engineering, 31, 3653 (2011). https://doi.org/10.1016/j.applthermaleng.2010.12.031
  8. W. I. Hussein, K. Hasan, and A. A. Jaradat, Diabetes Research and Clinical Practice, 94, e24 (2011). https://doi.org/10.1016/j.diabres.2011.07.025
  9. E. B. Liebow, J. H. Derzon, J. Fontanesi, A. M. Favoretto, R. A. Baetz, C. Shaw, P. Thompson, D. Mass, R. Christenson, P. Epner, and S. R. Snyder, Clinical Biochemistry, 45, 979 (2012). https://doi.org/10.1016/j.clinbiochem.2012.06.023
  10. H. Wakadha, S. Chandir, E. V. Were, A. Rubin, D. Obor, O. S. Levine, D. G. Gibson, F. Odhiambo, K. F. Laserson, and D. R. Feikin, Vaccine, 31, 987 (2013). https://doi.org/10.1016/j.vaccine.2012.11.093
  11. C. Falconi, Sensors and Actuators B: Chemical, 179, 336 (2013). https://doi.org/10.1016/j.snb.2012.10.065
  12. N. Festin, C. Plesse, P. Pirim, C. Chevrot, and F. Vidal, Sensors and Actuators B: Chemical, 193, 82 (2014). https://doi.org/10.1016/j.snb.2013.11.050