DOI QR코드

DOI QR Code

Down-regulated MYH11 Expression Correlates with Poor Prognosis in Stage II and III Colorectal Cancer

  • Wang, Ren-Jie (Department of Colorectal Surgery, Fudan University Shanghai Cancer Center) ;
  • Wu, Peng (Department of Colorectal Surgery, Fudan University Shanghai Cancer Center) ;
  • Cai, Guo-Xiang (Department of Colorectal Surgery, Fudan University Shanghai Cancer Center) ;
  • Wang, Zhi-Min (Department of Colorectal Surgery, Fudan University Shanghai Cancer Center) ;
  • Xu, Ye (Department of Colorectal Surgery, Fudan University Shanghai Cancer Center) ;
  • Peng, Jun-Jie (Department of Colorectal Surgery, Fudan University Shanghai Cancer Center) ;
  • Sheng, Wei-Qi (Department of Pathology, Fudan University Shanghai Cancer Center) ;
  • Lu, Hong-Fen (Department of Pathology, Fudan University Shanghai Cancer Center) ;
  • Cai, San-Jun (Department of Colorectal Surgery, Fudan University Shanghai Cancer Center)
  • Published : 2014.09.15

Abstract

The MYH11 gene may be related to cell migration and adhesion, intracellular transport, and signal transduction. However, its relationship with prognosis is still uncertain. The aim of this study was to investigate correlations between MYH11 gene expression and prognosis in 58 patients with stage II and III colorectal cancer. Quantitative real-time polymerase chain reaction was performed in fresh CRC tissues to examine mRNA expression, and immunohistochemistry was performed with paraffin-embedded specimens for protein expression. On univariate analysis, MYH11 expression at both mRNA and protein levels, perineural invasion and lymphovascular invasion were related to disease-free survival (p<0.05; log-rank test). Cancers with lower MYH11 expression were more likely to have a poor prognosis. Otherwise, MYH11 expression was unrelated to patient clinicopathological features. On multivariate analysis, low MYH11 expression proved to be an independent adverse prognosticator (p<0.05). These findings show that MYH11 can contribute to predicting prognosis in stage II and III colorectal cancers.

Keywords

MYH11;realtime PCR;immunohistochemistry;prognosis;colorectal cancer

References

  1. Alhopuro P, Phichith D, Tuupanen S, et al (2008). Unregulated smooth-muscle myosin in human intestinal neoplasia. Proc Natl Acad Sci USA, 105, 5513-8. https://doi.org/10.1073/pnas.0801213105
  2. Aschele C, Bergamo F, Lonardi S (2009). Chemotherapy for operable and advanced colorectal cancer. Cancer Treat Rev, 35, 509-16. https://doi.org/10.1016/j.ctrv.2009.04.003
  3. Atrkar-Roushan Z, Kazemnejad A, Mansour-Ghanaei F, et al (2013). Trend analysis of gastrointestinal cancer incidences in Guilan province: comparing rates over 15 years. Asian Pac J Cancer Prev, 14, 7587-93. https://doi.org/10.7314/APJCP.2013.14.12.7587
  4. Chen Q, Xia HW, Ge XJ, et al (2013). Serum miR-19a predicts resistance to FOLFOX chemotherapy in advanced colorectal cancer cases. Asian Pac J Cancer Prev, 14, 7421-6. https://doi.org/10.7314/APJCP.2013.14.12.7421
  5. Chibalina MV, Puri C, Kendrick-Jones J, et al (2009). Potential roles of myosin VI in cell motility. Biochem Soc T, 37, 966-70. https://doi.org/10.1042/BST0370966
  6. Compton C, Fenoglio-Preiser CM, Pettigrew N, et al (2000). American joint committee on cancer prognostic factors consensus conference. Cancer, 88, 1739-57. https://doi.org/10.1002/(SICI)1097-0142(20000401)88:7<1739::AID-CNCR30>3.0.CO;2-T
  7. Cserni G (2003). Nodal staging of colorectal carcinomas and sentinel nodes. J Clin Pathol, 56, 327-35. https://doi.org/10.1136/jcp.56.5.327
  8. Cui WJ, Liu Y, Zhou XL, et al (2010). Myosin light chain kinase is responsible for high proliferative ability of breast cancer cells via anti-apoptosis involving p38 pathway. Acta Pharmacol Sin, 31, 725-32. https://doi.org/10.1038/aps.2010.56
  9. Cui YL, Li HK, Zhou HY, et al (2013). Correlations of tumorassociated macrophage subtypes with liver metastases of colorectal cancer. Asian Pac J Cancer Prev, 14, 1003-7. https://doi.org/10.7314/APJCP.2013.14.2.1003
  10. De Dosso S, Sessa C, Saletti P (2009). Adjuvant therapy for colon cancer: present and perspectives. Cancer Treat Rev, 35, 160-6. https://doi.org/10.1016/j.ctrv.2008.10.001
  11. de Gramont A, Tournigand C, Andre T, et al Adjuvant therapy for stage II and III colorectal cancer. Semin Oncol, 2007, 37.
  12. Deng BG, Yao JH, Liu QY, et al (2013). Comparative serum proteomic analysis of serum diagnosis proteins of colorectal cancer based on magnetic bead separation and maldi-tof mass spectrometry. Asian Pac J Cancer Prev, 14, 6069-75. https://doi.org/10.7314/APJCP.2013.14.10.6069
  13. Ding YL, Wang QS, Zhao WM, et al (2012). Expression of smoothened protein in colon cancer and its prognostic value for postoperative liver metastasis. Asian Pac J Cancer Prev, 13, 4001-5. https://doi.org/10.7314/APJCP.2012.13.8.4001
  14. Dong H, Tang J, Li LH, et al (2013). Serum carbohydrate antigen 19-9 as an indicator of liver metastasis in colorectal carcinoma cases. Asian Pac J Cancer Prev, 14, 909-13. https://doi.org/10.7314/APJCP.2013.14.2.909
  15. Fang WJ, Zheng Y, Wu LM, et al (2012). Genome-wide analysis of aberrant DNA methylation for identification of potential biomarkers in colorectal cancer patients. Asian Pac J Cancer Prev, 13, 1917-21. https://doi.org/10.7314/APJCP.2012.13.5.1917
  16. Fromowitz FB, Viola MV, Chao S, et al (1987). ras p21 expression in the progression of breast cancer. Hum Pathol, 18, 1268-75. https://doi.org/10.1016/S0046-8177(87)80412-4
  17. Gao CM, Ding JH, Li SP, et al (2013). Polymorphisms in XRCC1 gene, alcohol drinking, and risk of colorectal cancer: a case-control study in jiangsu province of China. Asian Pac J Cancer Prev, 14, 6613-8. https://doi.org/10.7314/APJCP.2013.14.11.6613
  18. Goyama S, Mulloy JC (2011). Molecular pathogenesis of core binding factor leukemia: current knowledge and future prospects. Int J Hematol, 94, 126-33. https://doi.org/10.1007/s12185-011-0858-z
  19. Heidarnia MA, Monfared ED, Akbari ME, et al (2013). Social determinants of health and 5-year survival of colorectal cancer. Asian Pac J Cancer Prev, 14, 5111-6. https://doi.org/10.7314/APJCP.2013.14.9.5111
  20. Hu Y, Wang JL, Tao HT, et al (2013). Expression and significance of TSGF, CEA and AFP in patients before and after radical surgery for colon cancer. Asian Pac J Cancer Prev, 14, 3877-80. https://doi.org/10.7314/APJCP.2013.14.6.3877
  21. Huang GL, Guo HQ, Yang F, et al (2012). Activating transcription factor 1 is a prognostic marker of colorectal cancer. Asian Pac J Cancer Prev, 13, 1053-7. https://doi.org/10.7314/APJCP.2012.13.3.1053
  22. Jacobs K, Van Gele M, Forsyth R, et al (2010). P-cadherin counteracts myosin II-B function: implications in melanoma progression. Mol Cancer, 9, 255. https://doi.org/10.1186/1476-4598-9-255
  23. Krasna MJ, Flancbaum L, Cody RP, et al (1988). Vascular and neural invasion in colorectal carcinoma. Incidence and prognostic significance. Cancer, 61, 1018-23. https://doi.org/10.1002/1097-0142(19880301)61:5<1018::AID-CNCR2820610527>3.0.CO;2-H
  24. Krendel M, Mooseker MS (2005). Myosins: tails (and heads) of functional diversity. Physiology, 20, 239-51. https://doi.org/10.1152/physiol.00014.2005
  25. Lee WS, Seo G, Shin HJ, et al (2008). Identification of differentially expressed genes in microsatellite stable HNPCC and sporadic colon cancer. J Surg Res, 144, 29-35. https://doi.org/10.1016/j.jss.2007.02.005
  26. Li ZT, Zhang L, Gao XZ, et al (2013). Expression and significance of the Wip1 proto-oncogene in colorectal cancer. Asian Pac J Cancer Prev, 14, 1975-9. https://doi.org/10.7314/APJCP.2013.14.3.1975
  27. Liebig C, Ayala G, Wilks JA, et al (2009). Perineural invasion in cancer: a review of the literature. Cancer, 115, 3379-91. https://doi.org/10.1002/cncr.24396
  28. Lohsiriwat V, Anubhonganant W, Prapasrivorakul S, et al (2013). Outcomes of local excision for early rectal cancer: a 6-year experience from the largest university hospital in Thailand. Asian Pac J Cancer Prev, 14, 5141-4. https://doi.org/10.7314/APJCP.2013.14.9.5141
  29. Loikkanen I, Toljamo K, Hirvikoski P, et al (2009). Myosin VI is a modulator of androgen-dependent gene expression. Oncol Rep, 22, 991-5.
  30. Lu P, Liu R, Ma EM, et al (2012). Functional analysis of B7-H3 in colonic carcinoma cells. Asian Pac J Cancer Prev, 13, 3899-903. https://doi.org/10.7314/APJCP.2012.13.8.3899
  31. Lu Y, Liu P, Wen W, et al (2010). Cross-species comparison of orthologous gene expression in human bladder cancer and carcinogen-induced rodent models. Am J Transl Res, 3, 8-27.
  32. Madrigal-Bujaidar E, Martino Roaro L, Garcia-Aguirre K, et al (2013). Grapefruit juice suppresses azoxymethane-induced colon aberrant crypt formation and induces antioxidant capacity in mice. Asian Pac J Cancer Prev, 14, 6851-6. https://doi.org/10.7314/APJCP.2013.14.11.6851
  33. Matsuoka R, Yoshida MC, Furutani Y, et al (1993). Human smooth muscle myosin heavy chain gene mapped to chromosomal region 16q12. Am J Med Genet, 46, 61-7. https://doi.org/10.1002/ajmg.1320460110
  34. Pessina P, Conti V, Pacelli F, et al (2010). Skeletal muscle of gastric cancer patients expresses genes involved in muscle regeneration. Oncol Rep, 24, 741-5.
  35. Qian LY, Li P, Li XR, et al (2012). Multivariate analysis of molecular indicators for postoperative liver metastasis in colorectal cancer cases. Asian Pac J Cancer Prev, 13, 3967-71. https://doi.org/10.7314/APJCP.2012.13.8.3967
  36. Roychowdhury S, Iyer MK, Robinson DR, et al (2011). Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci Transl Med, 3, 111ra21.
  37. Saeed HM, Alanazi MS, Parine NR, et al (2013). Matrix metalloproteinase-2 (-1306 c>t) promoter polymorphism and risk of colorectal cancer in the Saudi population. Asian Pac J Cancer Prev, 14, 6025-30. https://doi.org/10.7314/APJCP.2013.14.10.6025
  38. Seitz S, Korsching E, Weimer J, et al (2006). Genetic background of different cancer cell lines influences the gene set involved in chromosome 8 mediated breast tumor suppression. Gene Chromosome Canc, 45, 612-27. https://doi.org/10.1002/gcc.20325
  39. Sisik A, Kaya M, Bas G, et al (2013). CEA and CA 19-9 are still valuable markers for the prognosis of colorectal and gastric cancer patients. Asian Pac J Cancer Prev, 14, 4289-94. https://doi.org/10.7314/APJCP.2013.14.7.4289
  40. Vickaryous N, Polanco-Echeverry G, Morrow S, et al (2008). Smooth-muscle myosin mutations in hereditary nonpolyposis colorectal cancer syndrome. Brit J Cancer, 99, 1726-8. https://doi.org/10.1038/sj.bjc.6604737
  41. Wu HW, Gao LD, Wei GH (2013). hMSH2 and nm23 expression in sporadic colorectal cancer and its clinical significance. Asian Pac J Cancer Prev, 14, 1995-8. https://doi.org/10.7314/APJCP.2013.14.3.1995
  42. Yang L, Huang XE, Xu L, et al (2013). Role of MYH polymorphisms in sporadic colorectal cancer in China: a case-control, population-based study. Asian Pac J Cancer Prev, 14, 6403-9. https://doi.org/10.7314/APJCP.2013.14.11.6403
  43. Zhang YY, Chen B, Ding YQ (2012). Metastasis-associated factors facilitating the progression of colorectal cancer. Asian Pac J Cancer Prev, 13, 2437-44. https://doi.org/10.7314/APJCP.2012.13.6.2437

Cited by

  1. The up-regulation of Myb may help mediate EGCG inhibition effect on mouse lung adenocarcinoma vol.10, pp.S2, 2016, https://doi.org/10.1186/s40246-016-0072-4
  2. Multiple region whole-exome sequencing reveals dramatically evolving intratumor genomic heterogeneity in esophageal squamous cell carcinoma vol.4, pp.11, 2015, https://doi.org/10.1038/oncsis.2015.34
  3. Characterization of DNA Methylation Associated Gene Regulatory Networks During Stomach Cancer Progression vol.9, pp.1664-8021, 2019, https://doi.org/10.3389/fgene.2018.00711